} li { margin-bottom: 10px;} } SEM

Wyoming Seminary


Academic Year 2019 - 2020

Multivariable Calculus

Multivariable Calculus

Meeting Times: MW 7:30PM - 9:00PM in Sprague 200

Course Syllabus

DATE ACTIVITY
08/26/2019 First Day of Class
08/28/2019 Homework 1 Due 09/04/2019
S. 12.1 (pp. 633 - 635): # 10, 12, 14, 16, 20, 22, 30, 40, 48, 63
S. 12.2 (pp. 642 - 644): # 18, 20, 22, 28, 30, 38, 40, 54
S. 12.3 (pp. 650 - 653): # 2, 4, 6, 20, 22, 24, 26, 28, 46, 54, 56, 78
09/04/2019 Mathematica Project 1 Due 09/11/2019
09/11/2019 Homework 2 Due 09/18/2019
Lecture Notes: Chapter 8 Problems (pp. 416 - 419)
# 2, 4, 6, 10, 12, 14
09/18/2019 Homework 3 Due 09/25/2019
Lecture Notes: Chapter 8 Problems (pp. 420) # 16, 18, 20, 22
S. 12.4 (pp. 660 - 662): # 10, 12, 22, 24, 28, 36, 44, 46
09/25/2019 Homework 4 Due 10/02/2019
S. 12.5 (pp. 668 - 670): # 2, 4, 14, 18, 20, 22, 26, 40, 52, 64, 66, 76
10/07/2019 Notes on Complex Numbers, Quaternions, and other Division Algebras
10/09/2019 EXAM 1, Outline for Exam 1
10/16/2019 Mathematica Project 2 Due 10/26/2019
10/25/2019 Homework 5 Due 10/30/2019
S. 13.1 (pp. 694 - 695): # 23, 24, 28
S. 13.2 (pp. 704 - 705): # 6, 20, 36, 42, 64
S. 13.3 (pp. 709 - 710): # 4, 8, 10, 20, 21, 22, 32
10/28/2019 Mathematica Notebook on Osculating Circles
Curve Generator
Mathematica Notebook on Planetary Motion
10/30/2019 Homework 6 Due 11/06/2019
S. 13.4 (pp. 718 - 721): # 2, 6, 8, 10, 28, 34, 44, 54, 72, 89
S. 13.5 (pp. 728, 729): # 6, 10, 20, 26, 28
11/06/2019 Homework 7 Due 11/13/2019
S. 13.5 (pp. 729, 730): # 36, 38, 44, 48, 50
S. 13.6 (pp. 735, 736): # 6, 8, 17
11/20/2019 EXAM 2, Outline for Exam 2
12/11/2019 Mathematica Project 4 (Due 12/18/2019):
    S. 14.1 (p. 748) # 22, 23, 25
    For each function, produce a contour plot showing at least 4 contours.
        (Be sure to choose reasonable contour values for each function).
    Then produce a 3D plot of the surface z = f(x,y).
Homework 8 (Due 12/18/2019)
S. 14.2 (p. 756): # 16, 18, 22, 32, 40, 41
S. 14.3 (pp. 765, 766): # 20, 32, 36, 42, 44, 48, 58, 60, 74
S. 14.6 (pp. 792, 793): # 4, 6, 20, 28, 30
01/06/2020 Homework 9 Due 01/15/2020
    S. 14.4 (p. 773): # 8, 10, 12, 20
    S. 14.5 (pp. 785, 786): # 6, 8, 12, 14, 22, 30, 34, 42, 60
Homework 10 Due 01/15/2020
    S. 14.7 (p. 805 - 807): # 14, 16, 18, 20, 36, 38
    S. 14.8 (pp. 815, 816): # 8, 10, 12, 18, 19, 26
01/13/2020 Mathematica Project 5 DUE 01/20/2020
Help File
01/22/2020 EXAM 3, Outline for Exam 3
02/05/2020 Homework 11 Due 02/12/2020
    S. 15.1 (pp. 830, 831): # 24, 28, 30, 40, 46
    S. 15.2 (pp. 842, 843): # 14, 20, 32, 33, 48
    S. 15.3 (pp. 854, 855): # 10, 14, 16, 24, 28
02/13/2020 Homework 12 Due 02/19/2020
    S. 15.4 (pp. 864, 865): # 10, 14, 18, 26, 30, 46, 48
    S. 15.5 (pp. 874, 875): # 16, 20, 22, 27
    S. 15.6 (pp. 889, 890): # 22, 30, 32, 38
03/30/2020 Assignments on Vector Fields and Line Integrals:
Video: Introduction to Vector Fields
Video: Introduction to Line Integrals
Video: Line Integrals of Vector Fields
Video: Conservative Vector Fields and Potentials I
Video: Conservative Vector Fields and Potentials II
Homework on Vector Fields and Line Integrals (DUE on 04/13/2020):
    Section 16.1 (pp. 902 - 903) # 22, 28
    Section 16.2 (p. 916) # 10, 12, 20, 24, 28, 32
    Section 16.3 (pp. 929, 930) # 2, 4, 10, 12, 16, 24, 26
04/21/2020 Assignments on Parametric Surfaces and Surface Integrals:
Video: Introduction to Parametric Surfaces
Video: Surface Integrals of Scalar Functions
Video: Surface Integrals of Vector Fields
Homework on Parametric Surfaces and Surface Integrals (DUE on 05/04/2020):
    Section 16.4 (pp. 941, 942) # 2, 4, 14, 16, 18, 36
    Section 16.5 (pp. 952, 953) # 8, 10, 12, 14, 20 (see #19 for relevant definitions), 22
05/08/2020 Assignments on The Fundamental Theorems of Vector Calculus:
Video: Green's Theorem
Video: Stokes' Theorem
Video: The Divergence Theorem
Video: Applications of Vector Calculus
Homework on The Fundamental Theorems of Vector Calculus (DUE on 05/18/2020):
    Section 17.1 (pp. 967 - 969) # 4, 8, 12, 16, 24
    Section 17.2 (pp. 979, 980) # 2, 8, 14, 18, 20
    Section 17.3 (pp. 991, 992) # 2, 10, 18, 20, 24

Mathematica Tutorial

Another Mathematica Tutorial

The 7 Cardinal Sins of Mathematics

Derivative and Integration Table

Coupled Oscillators