Studies of the Relativistic Vlasov-Poisson System

Brent Young Rutgers University

Ph.D. Defense - Director: Michael K.-H. Kiessling

April 12, 2011

- Introduction
- igotimes Optimal \mathfrak{L}^eta -Control for the Global Cauchy Problem for rVP $^-$
- Zero Energy Initial Data Leading to Finite-Time Collapse for rVP-
- $oxed{4}$ On the Relevance of rVP $^-$ for Coulombic Two-Specie Plasmas

$$\mathrm{rVP}^{\pm}: \left\{ \begin{array}{l} \left(\partial_t + \frac{p}{\sqrt{1+|p|^2}} \cdot \nabla_q \pm \nabla_q \varphi_t(q) \cdot \nabla_p\right) f_t(p,q) = 0 \\ \\ \triangle_q \varphi_t(q) = 4\pi \int f_t(p,q) \ d^3p \\ \\ \varphi_t(q) \asymp -|q|^{-1} \ \mathrm{as} \ |q| \to \infty. \end{array} \right.$$

• The boundary condition allows us to write $\varphi_t = -|\mathrm{Id}|^{-1} * \int f_t d^3p$.

$$\mathrm{rVP}^{\pm}: \left\{ \begin{array}{l} \left(\partial_t + \frac{p}{\sqrt{1+|p|^2}} \cdot \nabla_q \pm \nabla_q \varphi_t(q) \cdot \nabla_p\right) f_t(p,q) = 0 \\ \\ \triangle_q \varphi_t(q) = 4\pi \int f_t(p,q) \ d^3p \\ \\ \varphi_t(q) \asymp -|q|^{-1} \ \mathrm{as} \ |q| \to \infty. \end{array} \right.$$

- The boundary condition allows us to write $\varphi_t = -|\mathrm{Id}|^{-1} * \int f_t d^3p$.
- rVP⁺ models a single specie system with repulsive Coulombic interactions.

- The boundary condition allows us to write $\varphi_t = -|\mathrm{Id}|^{-1} * \int f_t d^3p$.
- rVP⁺ models a single specie system with repulsive Coulombic interactions.
- rVP⁻ models a single specie system with attractive Newtonian interactions.

1985: The first detailed study of the rVP system is published by Glassey and Schaeffer.

- 1985: The first detailed study of the rVP system is published by Glassey and Schaeffer.
 - They prove global classical solutions to ${\rm rVP}^\pm$ will exist for initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which are in addition compactly supported in \mathbb{R}^6 and have \mathfrak{L}^∞ -norm below a critical constant \mathcal{C}_∞^\pm , with $\mathcal{C}_\infty^+=\infty$ and $\mathcal{C}_\infty^-<\infty$.

- 1985: The first detailed study of the rVP system is published by Glassey and Schaeffer.
 - They prove global classical solutions to ${\rm rVP}^\pm$ will exist for initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which are in addition compactly supported in \mathbb{R}^6 and have \mathfrak{L}^∞ -norm below a critical constant \mathcal{C}_∞^\pm , with $\mathcal{C}_\infty^+=\infty$ and $\mathcal{C}_\infty^-<\infty$.
 - They also prove that negative energy data lead to "blow-up" (i.e. formation of a singularity) for rVP⁻ in finite time.

- 1985: The first detailed study of the rVP system is published by Glassey and Schaeffer.
 - They prove global classical solutions to ${\rm rVP}^\pm$ will exist for initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which are in addition compactly supported in \mathbb{R}^6 and have \mathfrak{L}^∞ -norm below a critical constant \mathcal{C}_∞^\pm , with $\mathcal{C}_\infty^+=\infty$ and $\mathcal{C}_\infty^-<\infty$.
 - They also prove that negative energy data lead to "blow-up" (i.e. formation of a singularity) for rVP⁻ in finite time.
- 2001: Glassey and Schaeffer publish additional results on the global existence of symmetric solutions to rVP.

2007: Hadžić and Rein show the non-linear stability of a wide class of steady-state solutions of ${
m rVP}^-$ against certain allowable perturbations utilizing energy-Casimir functionals.

- 2007: Hadžić and Rein show the non-linear stability of a wide class of steady-state solutions of ${
 m rVP}^-$ against certain allowable perturbations utilizing energy-Casimir functionals.
- 2008: Lemou, Méhats, and Raphaël study non-linear stability versus the formation of singularities in ${
 m rVP^-}$ through concentration compactness techniques. They also show that systems launched by initial data with negative total energy approach self-similar collapse.

2008: Kiessling & Tahvildar-Zadeh extend the Glassey-Schaeffer Thm.

• Specifically, they prove global existence of classical solutions for rVP $^-$ launched by initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which in addition are in $\mathfrak{P}_1\cap\mathfrak{C}^1$ and have \mathfrak{L}^β -norm below a critical constant \mathcal{C}^-_β with $\mathcal{C}^-_\beta<\infty$, and \mathcal{C}^-_β identically zero iff $\beta<3/2$.

- Specifically, they prove global existence of classical solutions for rVP⁻ launched by initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which in addition are in $\mathfrak{P}_1 \cap \mathfrak{C}^1$ and have \mathfrak{L}^β -norm below a critical constant \mathcal{C}_β^- with $\mathcal{C}_\beta^- < \infty$, and \mathcal{C}_β^- identically zero iff $\beta < 3/2$.
- They find the sharp value of $\mathcal{C}_{3/2}^-$, but leave the remaining non-trivial constants as the solution of a minimization problem.

- Specifically, they prove global existence of classical solutions for rVP⁻ launched by initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which in addition are in $\mathfrak{P}_1 \cap \mathfrak{C}^1$ and have \mathfrak{L}^β -norm below a critical constant \mathcal{C}^-_β with $\mathcal{C}^-_\beta < \infty$, and \mathcal{C}^-_β identically zero iff $\beta < 3/2$.
- They find the sharp value of $\mathcal{C}_{3/2}^-$, but leave the remaining non-trivial constants as the solution of a minimization problem.
- They also show that zero total energy initial data with total virial less than or equal to -1/2 will blow up in finite time. However, they give no explicit examples of such data.

- Specifically, they prove global existence of classical solutions for rVP⁻ launched by initial data that are spherically symmetric, compactly supported in momentum space, and vanish on characteristics with vanishing angular momentum which in addition are in $\mathfrak{P}_1 \cap \mathfrak{C}^1$ and have \mathfrak{L}^β -norm below a critical constant \mathcal{C}^-_β with $\mathcal{C}^-_\beta < \infty$, and \mathcal{C}^-_β identically zero iff $\beta < 3/2$.
- They find the sharp value of $\mathcal{C}_{3/2}^-$, but leave the remaining non-trivial constants as the solution of a minimization problem.
- They also show that zero total energy initial data with total virial less than or equal to -1/2 will blow up in finite time. However, they give no explicit examples of such data.
- Finally, the appendix to their paper presents a novel proposal whereby rVP⁻ might obtain as the Vlasov Limit of an overall neutral two-specie charged plasma on certain space-time scales.

In the current work, we address the following questions from Kiessling's and Tahvildar-Zadeh's work:

In the current work, we address the following questions from Kiessling's and Tahvildar-Zadeh's work:

1) The optimal constants \mathcal{C}_{β}^{-} for $\beta>3/2$ will be found.

In the current work, we address the following questions from Kiessling's and Tahvildar-Zadeh's work:

- 1) The optimal constants \mathcal{C}_{β}^{-} for $\beta>3/2$ will be found.
- 2) Examples of initial data with zero total energy and virial less than or equal to -1/2 will be found. This answers in the affirmative the question of their existence by S. Calogero (private communication to S. Tahvildar-Zadeh).

In the current work, we address the following questions from Kiessling's and Tahvildar-Zadeh's work:

- 1) The optimal constants \mathcal{C}_{β}^{-} for $\beta>3/2$ will be found.
- 2) Examples of initial data with zero total energy and virial less than or equal to -1/2 will be found. This answers in the affirmative the question of their existence by S. Calogero (private communication to S. Tahvildar-Zadeh).
- 3) We examine the proposal for the emergence of rVP⁻ from overall neutral two-specie plasma interacting via *Coulombic* forces.

Optimal \mathfrak{L}^{β} -Control for the Global Cauchy Problem for rVP $^-$

The critical constant C_{β}^{-} is given by the following minimization problem:

$$\begin{array}{rcl} \mathcal{C}_{\beta}^{-} & \equiv & \inf_{\mathfrak{P}_{1} \cap \mathfrak{L}^{\beta}} \Phi_{\beta}(f), \\ \\ \Phi_{\beta}(f) & \equiv & \left(\frac{\mathcal{E}_{p}^{u}(f)}{-\mathcal{E}_{q}(f)}\right)^{3(1-\frac{1}{\beta})} \|f\|_{\beta}, \end{array}$$

The functionals \mathcal{E}_p^u and \mathcal{E}_q are given by

$$\begin{array}{lcl} \mathcal{E}_{p}^{u}(f) & \equiv & \iint |p| f(p,q) \; d^{3}p \; d^{3}q, \\ \\ \mathcal{E}_{q}(f) & \equiv & -\frac{1}{2} \iiint \frac{f(p',q') f(p,q)}{|q-q'|} \; d^{3}p' \; d^{3}p \; d^{3}q' \; d^{3}q. \end{array}$$

B. Young (Rutgers) Studies of rVP

8/53

Main Steps in the Determination of \mathcal{C}_{β}^-

suitably altering an argument of M. Weinstein.

Characterize the minimizers. The minimizers are found to be given

1. Show the existence of minimizers. This is accomplished by

- Characterize the minimizers. The minimizers are found to be given by the famous Lane-Emden functions.
- 3. Compute \mathcal{C}_{β}^- (which will depend on the first zeroes and derivatives at the first zero of the Lane-Emden functions). This last step must be done numerically as very few of the Lane-Emden functions are given by nice expressions.

1. It is easier to minimize over an expanded class of functions:

$$\Omega_{\beta} = \{ f : \mathbb{R}^6 \to \mathbb{R} : f \ge 0, \|f\|_1 + \||p|f\|_1 + \|f\|_{\beta} < \infty \}.$$

10 / 53

1. It is easier to minimize over an expanded class of functions:

$$\Omega_{\beta} = \{ f : \mathbb{R}^6 \to \mathbb{R} : f \ge 0, \|f\|_1 + \||p|f\|_1 + \|f\|_{\beta} < \infty \}.$$

2. We have to make a corresponding change in our functional

$$\widetilde{\Phi}_{\beta}(f) \equiv \left(\frac{\mathcal{E}_{p}^{u}(f)}{-\mathcal{E}_{q}(f)}\right)^{3(1-\frac{1}{\beta})} \|f\|_{\beta} \|f\|_{1}^{2-\frac{3}{\beta}},$$

with infimum $\widetilde{\mathcal{C}}_{\beta}$ over Ω_{β} .

1. It is easier to minimize over an expanded class of functions:

$$\Omega_{\beta} = \{ f : \mathbb{R}^6 \to \mathbb{R} : f \ge 0, \|f\|_1 + \||\rho|f\|_1 + \|f\|_{\beta} < \infty \}.$$

2. We have to make a corresponding change in our functional

$$\widetilde{\Phi}_{\beta}(f) \equiv \left(\frac{\mathcal{E}_{p}^{u}(f)}{-\mathcal{E}_{q}(f)}\right)^{3(1-\frac{1}{\beta})} \|f\|_{\beta} \|f\|_{1}^{2-\frac{3}{\beta}},$$

with infimum $\widetilde{\mathcal{C}}_{\beta}$ over Ω_{β} .

3. The triple family of scalings

$$f_{\kappa,\lambda,\mu}(p,q) \equiv \mu f(\lambda p, \kappa q)$$

leaves $\widetilde{\Phi}_{\beta}$ invariant and allows us to choose a minimizing sequence $f_{\beta,n}$ so that $\widetilde{\Phi}_{\beta}\left(f_{\beta,n}\right)=\left(-\mathcal{E}_{q}(f_{\beta,n})\right)^{-3(1-\frac{1}{\beta})}$. By taking spherically symmetric equi-measurable rearrangements, we can also assume our functions are spherically symmetric.

4. We can conclude (after perhaps extracting a subsequence) that $f_{\beta,n} \rightharpoonup f_{\beta}$ weakly in \mathfrak{L}^{β} .

- 4. We can conclude (after perhaps extracting a subsequence) that $f_{\beta,n} \rightharpoonup f_{\beta}$ weakly in \mathfrak{L}^{β} .
- 5. We have by construction and by Fatou's Lemma

$$\lim_{n\to\infty} \left(-\mathcal{E}_q(f_{\beta,n})\right)^{-3(1-\frac{1}{\beta})} = \widetilde{\mathcal{C}}_\beta \le \left(-\mathcal{E}_q(f_\beta)\right)^{-3(1-\frac{1}{\beta})}.$$

- 4. We can conclude (after perhaps extracting a subsequence) that $f_{\beta,n} \rightharpoonup f_{\beta}$ weakly in \mathfrak{L}^{β} .
- 5. We have by construction and by Fatou's Lemma

$$\lim_{n\to\infty} \left(-\mathcal{E}_q(f_{\beta,n})\right)^{-3(1-\frac{1}{\beta})} = \widetilde{\mathcal{C}}_\beta \le \left(-\mathcal{E}_q(f_\beta)\right)^{-3(1-\frac{1}{\beta})}.$$

6. Several technical estimates show

$$\lim_{n\to\infty}\mathcal{E}_q(f_{\beta,n})=\mathcal{E}_q(f_{\beta})$$

giving that f_{β} is a minimizer for $\widetilde{\Phi}_{\beta}$ over Ω_{β} .

B. Young (Rutgers) Studies of rVP

11 / 53

We adapt an idea of Lieb and Simon and take advantage of the convexity of Ω_{β} to compute the minimizer f_{β} .

We adapt an idea of Lieb and Simon and take advantage of the convexity of Ω_{β} to compute the minimizer f_{β} .

1. For arbitrary $\eta \in \Omega_{\beta}$ we compute

$$\left.\frac{d}{dt}\right|_{t=0^+}\widetilde{\Phi}_{\beta}((1-t)f_{\beta}+t\eta).$$

This has an advantage over using arbitrary variations of f_{β} , which may not belong to Ω_{β} .

We adapt an idea of Lieb and Simon and take advantage of the convexity of Ω_{β} to compute the minimizer f_{β} .

1. For arbitrary $\eta \in \Omega_{\beta}$ we compute

$$\frac{d}{dt}\Big|_{t=0^+}\widetilde{\Phi}_{\beta}((1-t)f_{\beta}+t\eta).$$

This has an advantage over using arbitrary variations of f_{β} , which may not belong to Ω_{β} .

After computing derivatives and taking advantage of the scaling above, we get

$$f_{\beta}(\boldsymbol{p}, \boldsymbol{q}) = (\phi_{\beta}(\boldsymbol{q}) - |\boldsymbol{p}|)_{+}^{\frac{1}{\beta-1}},$$

where $\phi_{\beta}(q)$ satisfies the Lane-Emden PDE:

$$-\triangle\phi_{eta}(oldsymbol{q})=oldsymbol{c}(eta)\left(\phi_{eta}(oldsymbol{q})
ight)_{+}^{rac{3eta-2}{eta-1}}$$

for a constant $c(\beta)$.

3. By spherical symmetry, this becomes the following ODE

$$\begin{aligned} \frac{d^2\phi_{\beta}}{dr^2} + \frac{2}{r} \frac{d\phi_{\beta}}{dr} + c(\beta) \left(\phi_{\beta}\right)_{+}^{\frac{3\beta-2}{\beta-1}} &= 0, \\ \frac{d\phi_{\beta}}{dr}(0) &= 0, \\ \frac{d\phi_{\beta}}{dr}(R_{\beta}) &= -\frac{1}{R_{\beta}^2}. \end{aligned}$$

The first boundary condition is imposed by the requirement that f_{β} be finite at the origin. The second one ensures that f_{β} has total mass 1 and is \mathfrak{C}^1 . Here, R_{β} is the first zero of $\phi_{\beta}(r)$.

13 / 53

4. When $\beta > 3/2$, the exponent appearing in the ODE, n_{β} , satisfies

$$3 < n_{\beta} = \frac{3\beta - 2}{\beta - 1} < 5,$$

with $\beta=3/2$ giving $n_{\beta}=5$ and $\beta\to\infty$ limiting to $n_{\beta}=3$. As is well known, for $0\le n_{\beta}<5$, the solutions to the Lane-Emden ODE have a zero at a finite distance from the origin. The $\beta=3/2$ (and so, $n_{\beta}=5$) case does not have compact support (this solution is known as Plummer's Sphere).

4. When $\beta > 3/2$, the exponent appearing in the ODE, n_{β} , satisfies

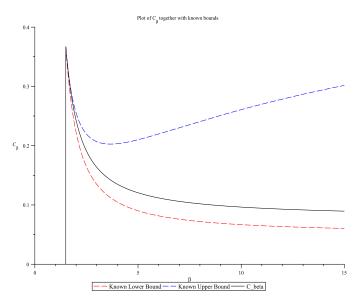
$$3 < n_{\beta} = \frac{3\beta - 2}{\beta - 1} < 5,$$

with $\beta=3/2$ giving $n_{\beta}=5$ and $\beta\to\infty$ limiting to $n_{\beta}=3$. As is well known, for $0\le n_{\beta}<5$, the solutions to the Lane-Emden ODE have a zero at a finite distance from the origin. The $\beta=3/2$ (and so, $n_{\beta}=5$) case does not have compact support (this solution is known as Plummer's Sphere).

5. Except in the critical case $\beta=3/2$ (which was found explicitly in the paper of Kiessling and Tahvildar-Zadeh), we find that our minimizers for $\widetilde{\mathcal{C}}_{\beta}$ are actually in $\mathfrak{P}_1\cap\mathfrak{L}^{\beta}$ and so give us \mathcal{C}_{β}^- .

$$\mathcal{C}_{\beta}^{-} = \left(\frac{\beta}{\mathcal{R}_{\beta}(2\beta-3)}\right)^{\frac{1}{\beta}}.$$

Numerical Results



Asymptotics

Using Buchdahl's result (1978) on the Plummer's Sphere ($\beta = 3/2$) we find an asymptotic formula for C_{β}^- that works well for $\beta \searrow 3/2$:

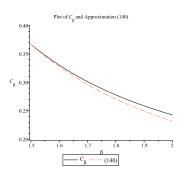
$$\mathcal{C}_{eta}^{-} \;\; pprox \;\; \left[rac{3\pi}{16} \left(rac{eta}{4eta - 3}
ight)
ight]^{rac{1}{eta}} \left(rac{3eta(2eta - 1)(3eta - 2)}{32\pi^2(eta - 1)^3}
ight)^{1 - rac{1}{eta}}.$$

April 12, 2011

Asymptotics

Using Buchdahl's result (1978) on the Plummer's Sphere ($\beta = 3/2$) we find an asymptotic formula for C_{β}^- that works well for $\beta \searrow 3/2$:

$$\mathcal{C}_{\beta}^{-} \ \approx \ \left[\frac{3\pi}{16}\left(\frac{\beta}{4\beta-3}\right)\right]^{\frac{1}{\beta}}\left(\frac{3\beta(2\beta-1)(3\beta-2)}{32\pi^{2}(\beta-1)^{3}}\right)^{1-\frac{1}{\beta}}.$$



B. Young (Rutgers)

 As mentioned already, Glassey and Schaeffer proved in 1985 that solutions to rVP⁻ launched by initial data with negative total energy blow-up in finite time.

- As mentioned already, Glassey and Schaeffer proved in 1985 that solutions to rVP⁻ launched by initial data with negative total energy blow-up in finite time.
- This is in sharp contrast to the non-relativistic Vlasov-Poisson system for which classical solutions exist globally in time (Pfaffelmoser 1992). Thus, the collapse in rVP⁻ is solely due to "relativistic" effects.

- As mentioned already, Glassey and Schaeffer proved in 1985 that solutions to rVP⁻ launched by initial data with negative total energy blow-up in finite time.
- This is in sharp contrast to the non-relativistic Vlasov-Poisson system for which classical solutions exist globally in time (Pfaffelmoser 1992). Thus, the collapse in rVP⁻ is solely due to "relativistic" effects.
- In 2008, Kiessling and Tahvildar-Zadeh proved that any spherically symmetric classical solution of rVP⁻ launched by initial data $f_0 \in \mathfrak{P}_3 \cap \mathfrak{C}^1$ with zero total energy and total virial less than or equal to -1/2 will blow up in finite time.

- As mentioned already, Glassey and Schaeffer proved in 1985 that solutions to rVP⁻ launched by initial data with negative total energy blow-up in finite time.
- This is in sharp contrast to the non-relativistic Vlasov-Poisson system for which classical solutions exist globally in time (Pfaffelmoser 1992). Thus, the collapse in rVP⁻ is solely due to "relativistic" effects.
- In 2008, Kiessling and Tahvildar-Zadeh proved that any spherically symmetric classical solution of rVP[−] launched by initial data f₀ ∈ \$\mathfrak{P}_3 \cap \mathfrak{C}^1\$ with zero total energy and total virial less than or equal to -1/2 will blow up in finite time.
- S. Calogero (private communication to S. Tahvildar-Zadeh) has questioned the existence of such initial data.

- As mentioned already, Glassey and Schaeffer proved in 1985 that solutions to rVP⁻ launched by initial data with negative total energy blow-up in finite time.
- This is in sharp contrast to the non-relativistic Vlasov-Poisson system for which classical solutions exist globally in time (Pfaffelmoser 1992). Thus, the collapse in rVP⁻ is solely due to "relativistic" effects.
- In 2008, Kiessling and Tahvildar-Zadeh proved that any spherically symmetric classical solution of rVP[−] launched by initial data f₀ ∈ \$\mathfrak{P}_3 \cap \mathfrak{C}^1\$ with zero total energy and total virial less than or equal to -1/2 will blow up in finite time.
- S. Calogero (private communication to S. Tahvildar-Zadeh) has questioned the existence of such initial data.
- We show the existence of zero-energy initial data that lead to finite-time blow-up for rVP⁻.

 Throughout, we use functions which are not €¹ to make calculations easier. We do this with the understanding that an appropriate procedure can be employed to regularize the data at the end of the construction.

- Throughout, we use functions which are not e¹ to make calculations easier. We do this with the understanding that an appropriate procedure can be employed to regularize the data at the end of the construction.
- First, the simplest possible ansatz will not work! That is, take

$$f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathscr{L}(\cos(\theta_{p,q})),$$

with

$$\eta(|q|) = \chi_{[0,R]}(|q|),$$

$$\Phi(|p|) = \chi_{[0,P]}(|p|),$$

$$\mathcal{L}(x) = \chi_{[-1.a]}(x)$$

• The zero energy requirement forces us to equate

$$\mathcal{E}_{p}(f) = \frac{3}{8} \left(\frac{\sqrt{1+P^{2}}}{P^{2}} + 2\sqrt{1+P^{2}} - \frac{\ln(P+\sqrt{1+P^{2}})}{P^{3}} \right),$$

 $\mathcal{E}_{q}(f) = -\frac{3}{5R},$

giving us R = R(P).

• The zero energy requirement forces us to equate

$$\begin{array}{lcl} {\cal E}_p(f) & = & \frac{3}{8} \left(\frac{\sqrt{1+P^2}}{P^2} + 2\sqrt{1+P^2} - \frac{\ln(P+\sqrt{1+P^2})}{P^3} \right), \\ \\ {\cal E}_q(f) & = & -\frac{3}{5R}, \end{array}$$

giving us R = R(P).

• This allows us to compute the virial $\mathcal{V}(f)$ and we find for any choice of P and a

$$V(f) > -\frac{9}{20} > -\frac{1}{2}.$$

B. Young (Rutgers) Studies of rVP April 12, 2011

Next, we try
$$f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathscr{L}(\cos(\theta_{p,q}))$$
, with

$$\begin{array}{lcl} \eta(|{\bm q}|) & = & \chi_{[0,R_1]}(|{\bm q}|) + \alpha \chi_{[R_2,R_3]}(|{\bm q}|), \\ \Phi(|{\bm p}|) & = & \chi_{[0,P]}(|{\bm p}|), \\ \mathcal{L}({\bm x}) & = & \chi_{[-1,a]}({\bm x}), \end{array}$$

where $0 < R_1 \le R_2 \le R_3, 0 < \alpha, 0 < P$, and $-1 < a \le 1$.

Next, we try $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathscr{L}(\cos(\theta_{p,q}))$, with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \alpha \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x),$$

where $0 < R_1 \le R_2 \le R_3, 0 < \alpha, 0 < P$, and $-1 < a \le 1$.

We first consider the specific choices

$$R_1 = \frac{1}{5}, R_2 = 1, R_3 = 2, \text{ and } P = 1.$$

Next, we try $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathscr{L}(\cos(\theta_{p,q}))$, with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \alpha \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x),$$

where $0 < R_1 \le R_2 \le R_3, 0 < \alpha, 0 < P$, and $-1 < a \le 1$.

We first consider the specific choices

$$R_1 = \frac{1}{5}, R_2 = 1, R_3 = 2, \text{ and } P = 1.$$

• Forcing the energy to be zero gives a complicated (but positive) expression for α .

Next, we try $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathscr{L}(\cos(\theta_{p,q}))$, with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \alpha \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x),$$

where $0 < R_1 \le R_2 \le R_3, 0 < \alpha, 0 < P$, and $-1 < a \le 1$.

We first consider the specific choices

$$R_1 = \frac{1}{5}, R_2 = 1, R_3 = 2, \text{ and } P = 1.$$

- Forcing the energy to be zero gives a complicated (but positive) expression for α .
- Choosing $-1 < a \le -4/5$ gives a virial which is less than -1/2.

B. Young (Rutgers) Studies of rVP April 12, 2011 20 / 53

 We can even choose our parameters in such a way that the virial becomes arbitrarily negative.

- We can even choose our parameters in such a way that the virial becomes arbitrarily negative.
- We choose

$$R_1 = P^{-2},$$

 $R_2 = P,$
 $R_3 = P^2,$

and the zero energy condition allows us to solve for $\alpha = \alpha(P)$. We find that α will be positive for sufficiently large P and is asymptotically proportional to $P^{-23/2}$.

- We can even choose our parameters in such a way that the virial becomes arbitrarily negative.
- We choose

$$R_1 = P^{-2},$$

 $R_2 = P,$
 $R_3 = P^2,$

and the zero energy condition allows us to solve for $\alpha = \alpha(P)$. We find that α will be positive for sufficiently large P and is asymptotically proportional to $P^{-23/2}$.

• Plugging these choices into the formula for the virial and looking at the asymptotics for large P shows that the virial is proportional to $-(1-a)P^3$.

We now report on a second class of favorable initial data. Again, take $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathcal{L}(\cos(\theta_{p,q}))$, but with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \left(\frac{R_1}{|q|}\right)^n \chi_{[R_1,R_2]}(|q|) + \left(\frac{R_1}{R_2}\right)^n \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x).$$

We now report on a second class of favorable initial data. Again, take $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathcal{L}(\cos(\theta_{p,q}))$, but with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \left(\frac{R_1}{|q|}\right)^n \chi_{[R_1,R_2]}(|q|) + \left(\frac{R_1}{R_2}\right)^n \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x).$$

• This ansatz is "singly supported" unlike the previous one.

B. Young (Rutgers) Studies of rVP April 12, 2011 22 / 53

We now report on a second class of favorable initial data. Again, take $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathcal{L}(\cos(\theta_{p,q}))$, but with

$$\begin{split} \eta(|q|) &= \chi_{[0,R_1]}(|q|) + \left(\frac{R_1}{|q|}\right)^n \chi_{[R_1,R_2]}(|q|) + \left(\frac{R_1}{R_2}\right)^n \chi_{[R_2,R_3]}(|q|), \\ \Phi(|p|) &= \chi_{[0,P]}(|p|), \\ \mathscr{L}(x) &= \chi_{[-1,a]}(x). \end{split}$$

- This ansatz is "singly supported" unlike the previous one.
- It is also monotonically decreasing.

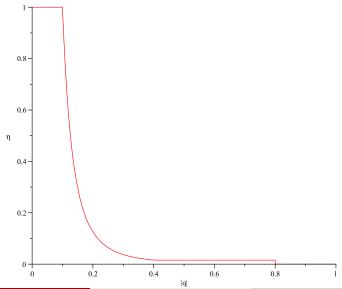
We now report on a second class of favorable initial data. Again, take $f(p,q) = \mathcal{C}\eta(|q|)\Phi(|p|)\mathcal{L}(\cos(\theta_{p,q}))$, but with

$$\eta(|q|) = \chi_{[0,R_1]}(|q|) + \left(\frac{R_1}{|q|}\right)^n \chi_{[R_1,R_2]}(|q|) + \left(\frac{R_1}{R_2}\right)^n \chi_{[R_2,R_3]}(|q|),
\Phi(|p|) = \chi_{[0,P]}(|p|),
\mathscr{L}(x) = \chi_{[-1,a]}(x).$$

- This ansatz is "singly supported" unlike the previous one.
- It is also monotonically decreasing.
- Choosing

$$R_1 = \frac{1}{100}, R_2 = \frac{1}{11}, R_3 = \frac{1}{10}, n = 3$$

sets a corresponding P (about 19.69) to force the zero-energy condition. Any choice of a less than roughly -9/10 gives us a virial less than -1/2.



Outline for Remainder of Talk

- A "Relativistic" 2N-Body Coulomb System
- A Regularized Version of rVP⁻
- Large Deviations, Entropy, and Rates of Convergence for Initial Data
- Space-Time Rescalings
- The Traditional Vlasov Space-Time Scale
- The A Priori Space-Time Scale
- Conclusions and Future Directions

• Fix a spherically symmetric regularizer $\eta \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{3})$ with

$$0 \le \eta \le 1$$
, $\|\eta\|_1 = 1$, and $\operatorname{supp}(\eta) \subseteq B_1(0)$.

• Fix a spherically symmetric regularizer $\eta \in \mathscr{C}^{\infty}_{c}(\mathbb{R}^{3})$ with

$$0 \le \eta \le 1, \|\eta\|_1 = 1$$
, and $supp(\eta) \subseteq B_1(0)$.

• For any $\epsilon > 0$ define

$$\eta_{\epsilon}(q) = \frac{1}{\epsilon^3} \eta\left(\frac{q}{\epsilon}\right)$$

(note that $\|\eta_{\epsilon}\|_{1} = 1 \ \forall \epsilon > 0$).

• Fix a spherically symmetric regularizer $\eta \in \mathscr{C}^\infty_c(\mathbb{R}^3)$ with

$$0 \le \eta \le 1, \|\eta\|_1 = 1$$
, and $supp(\eta) \subseteq B_1(0)$.

• For any $\epsilon > 0$ define

$$\eta_{\epsilon}(q) = \frac{1}{\epsilon^3} \eta\left(\frac{q}{\epsilon}\right)$$

(note that $\|\eta_{\epsilon}\|_{1} = 1 \ \forall \epsilon > 0$).

• Define the doubly regularized Coulomb force by:

$$G_{\epsilon}(q_1,q_2) = \iint \eta_{\epsilon}(q_1-w) \frac{w-w'}{|w-w'|^3} \eta_{\epsilon}(w'-q_2) d^3w d^3w'.$$

B. Young (Rutgers)

• Fix a spherically symmetric regularizer $\eta \in \mathscr{C}_c^{\infty}(\mathbb{R}^3)$ with

$$0 \le \eta \le 1, \|\eta\|_1 = 1$$
, and $supp(\eta) \subseteq B_1(0)$.

• For any $\epsilon > 0$ define

$$\eta_{\epsilon}(q) = \frac{1}{\epsilon^3} \eta\left(\frac{q}{\epsilon}\right)$$

(note that $\|\eta_{\epsilon}\|_{1} = 1 \ \forall \epsilon > 0$).

• Define the doubly regularized Coulomb force by:

$$G_{\epsilon}(q_1,q_2) = \iint \eta_{\epsilon}(q_1-w) \frac{w-w'}{|w-w'|^3} \eta_{\epsilon}(w'-q_2) d^3w d^3w'.$$

• By spherical symmetry $G_{\epsilon}(q_1, q_1) = 0$.

• Fix a spherically symmetric regularizer $\eta \in \mathscr{C}^{\infty}_c(\mathbb{R}^3)$ with

$$0 \le \eta \le 1, \|\eta\|_1 = 1$$
, and $supp(\eta) \subseteq B_1(0)$.

• For any $\epsilon > 0$ define

$$\eta_{\epsilon}(q) = \frac{1}{\epsilon^3} \eta\left(\frac{q}{\epsilon}\right)$$

(note that $\|\eta_{\epsilon}\|_{1} = 1 \ \forall \epsilon > 0$).

• Define the doubly regularized Coulomb force by:

$$G_{\epsilon}(q_1,q_2) = \iint \eta_{\epsilon}(q_1-w) \frac{w-w'}{|w-w'|^3} \eta_{\epsilon}(w'-q_2) d^3w d^3w'.$$

- By spherical symmetry $G_{\epsilon}(q_1, q_1) = 0$.
- Note $G_{\epsilon}(q_1,q_2) \equiv G_{\epsilon}(q_1-q_2)$.

We consider an overall neutral two-specie charged plasma with *N* particles of each type. All particles have unit mass. Even labels will refer to the positively charged species; odd labels will refer to the negative charges.

We consider an overall neutral two-specie charged plasma with *N* particles of each type. All particles have unit mass. Even labels will refer to the positively charged species; odd labels will refer to the negative charges.

Define the charge indicator by

$$e_i = \left\{ \begin{array}{ll} +1 & i \ \mathrm{even} \\ -1 & i \ \mathrm{odd} \end{array} \right. .$$

We consider an overall neutral two-specie charged plasma with *N* particles of each type. All particles have unit mass. Even labels will refer to the positively charged species; odd labels will refer to the negative charges.

Define the charge indicator by

$$e_i = \left\{ \begin{array}{ll} +1 & i \text{ even} \\ -1 & i \text{ odd} \end{array} \right..$$

The dynamics is given by:

$$\dot{q}_{i}(t) = v(p_{i}(t)),$$

$$\dot{p}_{i}(t) = e_{i} \sum_{j=1}^{N} G_{\epsilon}(q_{i}(t), q_{2j}(t)) - G_{\epsilon}(q_{i}(t), q_{2j-1}(t)),$$

where
$$v(p) = \frac{p}{\sqrt{1+|p|^2}}$$
.

We assume the initial condition

$$\mathcal{X}(0) \equiv (q_1(0), p_1(0), \dots, q_{2N}(0), p_{2N}(0)) \in \mathbb{R}^{12N}$$

for our plasma is chosen randomly according to

$$\mathbb{P}_0 = \bigotimes_{i=1}^{2N} f_0 \ d^3p \ d^3q,$$

where $f_0 \ge 0$ is any sufficiently nice function (continuously differentiable, say) on \mathbb{R}^6 with

$$\iint f_0(p,q) d^3p d^3q = 1.$$

B. Young (Rutgers)

We define the following *empirical measures*:

$$^{N}\!\Delta_{t}^{+}(p,q) = \frac{1}{N} \sum_{i=1}^{N} \delta(p - p_{2i}(t)) \delta(q - q_{2i}(t)),$$
 $^{N}\!\rho_{t}^{+}(q) = \frac{1}{N} \sum_{i=1}^{N} \delta(q - q_{2i}(t)),$
 $^{N}\!\Delta_{t}^{-}(p,q) = \frac{1}{N} \sum_{i=1}^{N} \delta(p - p_{2i-1}(t)) \delta(q - q_{2i-1}(t))$
 $^{N}\!\rho_{t}^{-}(q) = \frac{1}{N} \sum_{i=1}^{N} \delta(q - q_{2i-1}(t)),$

We define the following empirical measures:

$$\begin{array}{rcl}
^{N}\!\!\Delta_{t}^{+}(\rho,q) & = & \frac{1}{N}\sum_{i=1}^{N}\delta(\rho-\rho_{2i}(t))\delta(q-q_{2i}(t)), \\
^{N}\!\!\rho_{t}^{+}(q) & = & \frac{1}{N}\sum_{i=1}^{N}\delta(q-q_{2i}(t)), \\
^{N}\!\!\Delta_{t}^{-}(\rho,q) & = & \frac{1}{N}\sum_{i=1}^{N}\delta(\rho-\rho_{2i-1}(t))\delta(q-q_{2i-1}(t)) \\
^{N}\!\!\rho_{t}^{-}(q) & = & \frac{1}{N}\sum_{i=1}^{N}\delta(q-q_{2i-1}(t)),
\end{array}$$

Using the densities, our dynamics is given by a coupled pair of PDEs:

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(\rho) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_\rho {}^{N}\!\!\Delta_t^{\pm} = 0.$$

B. Young (Rutgers) Studies of rVP April 12, 2011 28 / 53

A Regularized Version of rVP-

Let f_t satisfy

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = 0,$$

where

$$\rho_{f_t}(q) = \int f_t(p,q) d^3q,$$

launched by some sufficiently regular f_0 .

Let f_t satisfy

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = 0,$$

where

$$\rho_{f_t}(q) = \int f_t(p,q) d^3q,$$

launched by some sufficiently regular f_0 .

• Associated to this PDE is a flow on \mathbb{R}^6

$$V^{0}[f](t,p,q) = \begin{bmatrix} -G_{\epsilon} * \rho_{f_{t}}(q) \\ v(p) \end{bmatrix}$$

$$T^{0}_{t,0}[f](p,q) = (p(t),q(t))$$

$$\begin{bmatrix} \dot{p}(t) \\ \dot{q}(t) \end{bmatrix} = V^{0}[f](t,p(t),q(t))$$

$$(p(0),q(0)) = (p,q).$$

We list some basic properties of our flow.

• First, a sharp version of the HLS Inequality shows us that G_{ϵ} is bounded and Lipschitz continuous (in either slot) with common bound

$$L_{\mathsf{G}} = rac{1}{\epsilon^3} \left(rac{8\pi^2}{3}
ight)^{rac{4}{3}} L_{\eta}.$$

We list some basic properties of our flow.

• First, a sharp version of the HLS Inequality shows us that G_{ϵ} is bounded and Lipschitz continuous (in either slot) with common bound

$$L_G = rac{1}{\epsilon^3} \left(rac{8\pi^2}{3}
ight)^{rac{4}{3}} L_{\eta}.$$

ullet This gives us a t-independent Lipschitz constant for $V^0\left[f\right]$

$$|V^{0}[f](t, p_{1}, q_{1}) - V^{0}[f](t, p_{2}, q_{2})| \le L_{0}|(p_{1}, q_{1}) - (p_{2}, q_{2})|,$$

where

$$L_0 = \max\{1, L_G\}$$
.

We list some basic properties of our flow.

• First, a sharp version of the HLS Inequality shows us that G_{ϵ} is bounded and Lipschitz continuous (in either slot) with common bound

$$L_G = \frac{1}{\epsilon^3} \left(\frac{8\pi^2}{3} \right)^{\frac{4}{3}} L_{\eta}.$$

This gives us a t-independent Lipschitz constant for V⁰ [f.]

$$|V^{0}[f](t,p_{1},q_{1})-V^{0}[f](t,p_{2},q_{2})| \leq L_{0}|(p_{1},q_{1})-(p_{2},q_{2})|,$$

where

$$L_0 = \max\{1, L_G\}$$
.

By a standard application of Gronwall's Inequality

$$\left|T_{t,0}^0[f](p_1,q_1)-T_{t,0}^0[f](p_2,q_2)\right|\leq e^{L_0t}|(p_1,q_1)-(p_2,q_2)|.$$

B. Young (Rutgers) Studies of rVP April 12, 2011 30 / 53

The topology we use is given by the dual, bounded Lipschitz distance (denoted d_{bL^*}) on the space of probability measures: for two probability measures μ and ν defined on \mathbb{R}^6

$$d_{bL^*}(\mu,
u) = \sup_{arphi \in \mathcal{D}(\mathbb{R}^6)} \left| \int arphi d(\mu -
u)
ight|,$$

where

$$\mathcal{D}(\mathbb{R}^6) = \left\{ \varphi : \mathbb{R}^6 \to [-1,1] \mid \mathrm{Lip}(\varphi) \leq 1 \right\}.$$

The topology we use is given by the dual, bounded Lipschitz distance (denoted d_{bL^*}) on the space of probability measures: for two probability measures μ and ν defined on \mathbb{R}^6

$$d_{bL^*}(\mu,
u) = \sup_{arphi \in \mathcal{D}(\mathbb{R}^6)} \left| \int arphi d(\mu -
u)
ight|,$$

where

$$\mathcal{D}(\mathbb{R}^6) = \left\{ \varphi : \mathbb{R}^6 \to [-1,1] \mid \mathrm{Lip}(\varphi) \leq 1 \right\}.$$

This topology is equivalent to the topology generated by all bounded, continuous functions. Probabilists call convergence w.r.t. d_{bL^*} convergence in law.

B. Young (Rutgers) Studies of rVP April 12, 2011

Sanov's Theorem states that our initial empirical measures satisfy a large deviation principle in $M_1(\mathbb{R}^6)$:

Sanov's Theorem states that our initial empirical measures satisfy a large deviation principle in $M_1(\mathbb{R}^6)$:

• For any measurable set A in $M_1(\mathbb{R}^6)$

$$\mathbb{P}_0\left({}^{N}\!\!\Delta_0^{\pm}\in A\right)\asymp \exp\left(-\inf_{\mu\in A}\{H(\mu|f_0d^3pd^3q)\}N\right).$$

Sanov's Theorem states that our initial empirical measures satisfy a large deviation principle in $M_1(\mathbb{R}^6)$:

• For any measurable set A in $M_1(\mathbb{R}^6)$

$$\mathbb{P}_0\left({}^{N}\!\!\Delta_0^{\pm}\in A\right)\asymp \exp\left(-\inf_{\mu\in A}\{H(\mu|f_0d^3pd^3q)\}N\right).$$

• $H(\mu|f_0d^3pd^3q)$ is the relative entropy of μ w.r.t. $f_0d^3pd^3q$:

$$H(\mu|
u) \equiv \int \ln\left(rac{d\mu}{d
u}
ight) d\mu = \int rac{d\mu}{d
u} \ln\left(rac{d\mu}{d
u}
ight) d
u$$

B. Young (Rutgers)

Since $d_{bL^*}({}^{N}\!\Delta_0^{\pm}, f_0)$ is a continuous function of the random variable ${}^{N}\!\Delta_0^{\pm}$, the *Contraction Principle* states that the metric also satisfies a large deviation principle:

$$\mathbb{P}_0\left(\textit{d}_{\textit{bL}^*}(^N\!\!\Delta_0^\pm,\textit{f}_0)>\delta\right) \asymp \exp\left(-\underline{\mathcal{H}}_{\textit{f}_0}(\delta)\textit{N}\right)$$

with rate function

$$\underline{\mathcal{H}}_{f_0}(\delta) \equiv \inf_{\mu \in M_1(\mathbb{R}^6)} \{ H(\mu | f_0 d^3 p d^3 q) : d_{bL^*}(\mu, f_0) > \delta \}$$

for any $\delta > 0$.

To make further progress, we need some assumption on f_0 .

To make further progress, we need some assumption on f_0 .

• We assume $f_0 d^3 p d^3 q$ satisfies the inequality LSI(κ, λ):

$$H(\nu|f_0d^3pd^3q) \leq \frac{1}{(1+1/\kappa)\lambda^{1/\kappa}} \int \left|\nabla \ln \frac{d\nu}{df_0}\right|^{1+1/\kappa} d\nu$$

which is to hold for any choice of probability measure ν absolutely continuous w.r.t. $f_0 d^3 p d^3 q$.

To make further progress, we need some assumption on f_0 .

• We assume $f_0 d^3 p d^3 q$ satisfies the inequality LSI(κ, λ):

$$H(\nu|f_0d^3pd^3q) \leq \frac{1}{(1+1/\kappa)\lambda^{1/\kappa}} \int \left|\nabla \ln \frac{d\nu}{df_0}\right|^{1+1/\kappa} d\nu$$

which is to hold for any choice of probability measure ν absolutely continuous w.r.t. $f_0 d^3 p d^3 q$.

• A lengthy argument shows $f_0 d^3 p d^3 q$ satisfies LSI(κ, λ) iff

$$H(\nu|f_0d^3pd^3q) \geq \frac{\lambda}{1+\kappa} (d_{bL^*}(\nu,f_0))^{1+\kappa}.$$

34 / 53

B. Young (Rutgers) Studies of rVP April 12, 2011

To make further progress, we need some assumption on f_0 .

• We assume $f_0 d^3 p d^3 q$ satisfies the inequality LSI(κ, λ):

$$H(\nu|f_0d^3pd^3q) \leq \frac{1}{(1+1/\kappa)\lambda^{1/\kappa}} \int \left|\nabla \ln \frac{d\nu}{df_0}\right|^{1+1/\kappa} d\nu$$

which is to hold for any choice of probability measure ν absolutely continuous w.r.t. $f_0 d^3 p d^3 q$.

• A lengthy argument shows $f_0 d^3 p d^3 q$ satisfies LSI(κ, λ) iff

$$H(\nu|f_0d^3pd^3q) \geq \frac{\lambda}{1+\kappa} (d_{bL^*}(\nu,f_0))^{1+\kappa}.$$

• We emphasize that κ must satisfy $\kappa \geq 1$.

• Suppose that $f_0 = \exp(-V)$ for some convex function V. If V satisfies the condition

$$V(x) + V(y) - 2V\left(\frac{x+y}{2}\right) \geq \frac{\lambda}{\kappa} ||x-y||^{1+\kappa},$$

for all x and y, then f_0 satisfies LSI(κ, λ) for some λ .

B. Young (Rutgers) Studies of rVP April 12, 2011 35 / 53

• Suppose that $f_0 = \exp(-V)$ for some convex function V. If V satisfies the condition

$$V(x) + V(y) - 2V\left(\frac{x+y}{2}\right) \geq \frac{\lambda}{\kappa} ||x-y||^{1+\kappa},$$

for all x and y, then f_0 satisfies LSI(κ, λ) for some λ .

• For $\kappa = 1$, any V of the form

$$V(p,q) = g(p,q) + |(p,q)|^2$$

with g convex will satisfy LSI(1, λ) for some λ .

B. Young (Rutgers) Studies of rVP April 12, 2011

Assuming f_0 satisfies LSI(κ, λ) gives the following rate

$$\mathbb{P}_0\left(d_{bL^*}({}^N\!\!\Delta_0^\pm,f_0)>\delta\right)\ \lesssim\ \exp\left(-\frac{\lambda\delta^{1+\kappa}}{1+\kappa}N\right)$$

which shows that at t=0, $d_{bL^*}({}^{N}\!\!\Delta_0^\pm,f_0)$ converges to zero in probability.

B. Young (Rutgers) Studies of rVP April 12, 2011

Assuming f_0 satisfies LSI(κ, λ) gives the following rate

$$\mathbb{P}_0\left(d_{bL^*}({}^N\!\!\Delta_0^\pm,f_0)>\delta\right)\ \lesssim\ \exp\left(-\frac{\lambda\delta^{1+\kappa}}{1+\kappa}N\right)$$

which shows that at t = 0, $d_{bL^*}({}^{N}\!\Delta_0^{\pm}, f_0)$ converges to zero in probability.

For sufficiently large N, the expected distance converges to zero like:

$$\mathbb{E}_{\mathbb{P}_0}\left[d_{bL^*}({}^{N}\!\!\Delta_0^\pm,f_0)\right] \hspace{2mm} \lesssim \hspace{2mm} \left(\frac{1}{\lambda N}\right)^{\frac{2}{1+\kappa}} \Gamma\left(\frac{2}{1+\kappa}\right) (1+\kappa)^{\frac{1-\kappa}{1+\kappa}}.$$

B. Young (Rutgers) Studies of rVP

Recall that our empirical-measure-dynamics is given by

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_\epsilon * \begin{bmatrix} {}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \end{bmatrix} (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

Recall that our empirical-measure-dynamics is given by

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

• Typically, one pursues Vlasov-type limits by scaling some quantity with *N* so that no *N* appears in front of the force term. This is sometimes referred to as the *mean-field approximation*.

Recall that our empirical-measure-dynamics is given by

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

- Typically, one pursues Vlasov-type limits by scaling some quantity with N so that no N appears in front of the force term. This is sometimes referred to as the mean-field approximation.
- Many treatments assume the mass of the constituent particles is 1/N. This will not work well with the relativistic velocity.

Recall that our empirical-measure-dynamics is given by

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

- Typically, one pursues Vlasov-type limits by scaling some quantity with N so that no N appears in front of the force term. This is sometimes referred to as the mean-field approximation.
- Many treatments assume the mass of the constituent particles is 1/N. This will not work well with the relativistic velocity.
- We choose to rescale space and time variables with *N*:

$$egin{array}{lll} ar{t} &=& N^{lpha}t, \\ ar{q} &=& N^{lpha}q, \\ ar{\epsilon} &=& N^{lpha}\epsilon, \\ ar{p} &=& p. \end{array}$$

The rescaled normalized densities are given by

$$^{N}\!\bar{\Delta}_{\bar{t}}^{\pm}(\bar{p},\bar{q})=N^{-3\alpha}\ ^{N}\!\!\Delta_{N^{-\alpha}\bar{t}}^{\pm}\left(\bar{p},N^{-\alpha}\bar{q}\right).$$

The rescaled normalized densities are given by

$$^{N}\!\bar{\Delta}_{\bar{t}}^{\pm}(\bar{p},\bar{q})=N^{-3\alpha}\ ^{N}\!\!\Delta_{N^{-\alpha}\bar{t}}^{\pm}\left(\bar{p},N^{-\alpha}\bar{q}\right).$$

 Working through the change of variables, we see that in the barred coordinates:

$$\partial_{\bar{t}}{}^{N}\!\bar{\Delta}_{\bar{t}}^{\pm} + \nu(\bar{p}) \cdot \nabla_{\bar{q}}{}^{N}\!\bar{\Delta}_{\bar{t}}^{\pm} \pm N^{1+\alpha}G_{\bar{\epsilon}} * \left[{}^{N}\!\bar{\rho}_{t}^{+} - {}^{N}\!\bar{\rho}_{t}^{-}\right](\bar{q}) \cdot \nabla_{\bar{p}}{}^{N}\!\bar{\Delta}_{\bar{t}}^{\pm} = 0.$$

B. Young (Rutgers) Studies of rVP April 12, 2011 38 / 53

The rescaled normalized densities are given by

$$^{N}\!\bar{\Delta}_{\bar{t}}^{\pm}(\bar{p},\bar{q})=N^{-3\alpha}\ ^{N}\!\!\Delta_{N^{-\alpha}\bar{t}}^{\pm}\left(\bar{p},N^{-\alpha}\bar{q}\right).$$

 Working through the change of variables, we see that in the barred coordinates:

$$\partial_{\bar{t}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} + v(\bar{p}) \cdot \nabla_{\bar{q}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} \pm N^{1+\alpha}G_{\bar{\epsilon}} * \begin{bmatrix} {}^{N}\bar{\rho}_{t}^{+} - {}^{N}\bar{\rho}_{t}^{-} \end{bmatrix}(\bar{q}) \cdot \nabla_{\bar{p}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} = 0.$$

• The choice $\alpha = -1$ corresponds to the *traditional Vlasov scales* (here, long time and large space scales).

The rescaled normalized densities are given by

$$^{N}\!\bar{\Delta}_{\bar{t}}^{\pm}(\bar{p},\bar{q})=N^{-3\alpha}\ ^{N}\!\!\Delta_{N^{-\alpha}\bar{t}}^{\pm}\left(\bar{p},N^{-\alpha}\bar{q}\right).$$

 Working through the change of variables, we see that in the barred coordinates:

$$\partial_{\bar{t}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} + v(\bar{p}) \cdot \nabla_{\bar{q}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} \pm N^{1+\alpha}G_{\bar{\epsilon}} * \begin{bmatrix} {}^{N}\bar{\rho}_{t}^{+} - {}^{N}\bar{\rho}_{t}^{-} \end{bmatrix}(\bar{q}) \cdot \nabla_{\bar{p}}{}^{N}\bar{\Delta}_{\bar{t}}^{\pm} = 0.$$

- The choice $\alpha = -1$ corresponds to the *traditional Vlasov scales* (here, long time and large space scales).
- The choice $\alpha=0$ gives the *a priori* scales (where Vlasov limits are not traditionally studied).

B. Young (Rutgers) Studies of rVP April 12, 2011 38 / 53

To be definite, our system of PDEs on the $\alpha = -1$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm G_\epsilon * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

To be definite, our system of PDEs on the $\alpha = -1$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm G_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

• We can assume that the positive particles are chose *iid* by f_0^+ and the negative particles *iid* by f_0^- .

To be definite, our system of PDEs on the $\alpha = -1$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm G_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

- We can assume that the positive particles are chose iid by f_0^+ and the negative particles *iid* by f_0^- .
- We show ${}^{N}\!\Delta_{t}^{\pm} \to f_{t}^{\pm}$ as $N \to \infty$, where f_{t}^{\pm} satisfy the following two-specie relativistic Vlasov-Poisson system:

$$\partial_t f_t^{\pm} + v(p) \cdot \nabla_q f_t^{\pm} \pm G_{\epsilon} * \left[\rho_{f_t^+} - \rho_{f_t^-} \right] (q) \cdot \nabla_p f_t^{\pm} = 0,$$

To be definite, our system of PDEs on the $\alpha = -1$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm G_\epsilon * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

- We can assume that the positive particles are chose *iid* by f_0^+ and the negative particles *iid* by f_0^- .
- We show ${}^{N}\!\Delta_{t}^{\pm} \to f_{t}^{\pm}$ as $N \to \infty$, where f_{t}^{\pm} satisfy the following two-specie relativistic Vlasov-Poisson system:

$$\partial_t f_t^{\pm} + v(p) \cdot \nabla_q f_t^{\pm} \pm G_{\epsilon} * \left[\rho_{f_t^+} - \rho_{f_t^-} \right] (q) \cdot \nabla_p f_t^{\pm} = 0,$$

• In the special case $f_0^+ = f_0^- = f_0$, then our coupled PDEs reduce to the free-streaming PDE:

$$\partial_t f_t + v(p) \cdot \nabla_q f_t = 0$$

which has the obvious solution $f_t(p, q) = f_0(p, q - tv(p))$.

The main estimate showing convergence for all t is

$$d_{bL^*}({}^{N}\!\!\Delta_t^+, f_t^+) + d_{bL^*}({}^{N}\!\!\Delta_t^-, f_t^-) \leq \frac{e^{(2\sqrt{3}L_G + L_\pm)t}}{2\sqrt{3}L_G} \left(d_{bL^*}({}^{N}\!\!\Delta_0^+, f_0^+) + d_{bL^*}({}^{N}\!\!\Delta_0^-, f_0^-)\right).$$

where $L_{\pm} = \max\{1, 2L_{G}\}$.

The main estimate showing convergence for all t is

$$d_{bL^*}({}^{N}\!\!\Delta_t^+, f_t^+) + d_{bL^*}({}^{N}\!\!\Delta_t^-, f_t^-) \leq \frac{e^{(2\sqrt{3}L_G + L_\pm)t}}{2\sqrt{3}L_G} \left(d_{bL^*}({}^{N}\!\!\Delta_0^+, f_0^+) + d_{bL^*}({}^{N}\!\!\Delta_0^-, f_0^-) \right).$$

where $L_{\pm} = \max\{1, 2L_{G}\}$.

Sanov's Theorem still applies, and so

$$\mathbb{E}_{\mathbb{P}_0}\left[d_{bL^*}({}^{N}\!\!\Delta_t^+,\!f_t^+)+d_{bL^*}({}^{N}\!\!\Delta_t^-,\!f_t^-)\right]\ \lesssim\ \frac{\mathcal{C}e^{(2\sqrt{3}L_G+L_\pm)t}}{L_GN^{\frac{2}{1+\kappa}}}.$$

B. Young (Rutgers) Studies of rVP April 12, 2011

For concreteness, our system of PDEs on the $\alpha = 0$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_\epsilon * \left[{}^{N}\!\!\rho_t^+ - {}^{N}\!\!\rho_t^- \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

For concreteness, our system of PDEs on the $\alpha = 0$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

• We now consider initial data chosen *iid* by f_0 jointly in both species (recall, this gives free-streaming on the $\alpha = -1$ scale).

B. Young (Rutgers) Studies of rVP April 12, 2011 41/53

For concreteness, our system of PDEs on the $\alpha = 0$ scale is

$$\partial_t {}^{N}\!\!\Delta_t^{\pm} + v(p) \cdot \nabla_q {}^{N}\!\!\Delta_t^{\pm} \pm NG_{\epsilon} * \left[{}^{N}\!\!\rho_t^{+} - {}^{N}\!\!\rho_t^{-} \right] (q) \cdot \nabla_p {}^{N}\!\!\Delta_t^{\pm} = 0.$$

- We now consider initial data chosen *iid* by f_0 jointly in both species (recall, this gives free-streaming on the $\alpha = -1$ scale).
- Associated to this PDE system are flows on \mathbb{R}^6 :

$$egin{aligned} V^{\pm} \left[egin{aligned} lacksquare N_{\Delta}^{+}, lacksquare \Delta_{\cdot}^{-}
brace \left[t,
ho, q
ight) &= \left[egin{aligned} \pm NG_{\epsilon} * \left[lacksquare N_{t}^{+} - lacksquare N_{t}^{-}
brace \left(q
ight) \end{aligned}
ight], \ T_{t,0}^{\pm} \left[lacksquare N_{\Delta}^{+}, lacksquare N_{\Delta}^{-}
ight] (
ho, q) &= (
ho(t), q(t)), \ \left[lacksquare \dot{p}(t)
ight] &= V^{\pm} \left[lacksquare N_{\Delta}^{+}, lacksquare N_{\Delta}^{-}
ight] (t,
ho(t), q(t)), \ (
ho(0), q(0)) &= (
ho, q). \end{aligned}$$

 Recall, we want to compare the finite N dynamics to f_t given by the regularized version of rVP⁻:

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = 0.$$

The A Priori Space-Time Scale

 Recall, we want to compare the finite N dynamics to f_t given by the regularized version of rVP⁻:

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = 0.$$

- Recall that this PDE generates a flow $T_{t,0}^0[f]$ with associated vector field $V^0[f]$, which has Lipschitz constant L_0 (depending on L_G), and so $T_{t,0}^0[f]$ has Lipschitz constant e^{L_0t} .
- $L_0 = \max\{1, L_G\}.$

42 / 53

The Fixed Point Characterization

Using the various flows we have defined, we can represent our PDEs as fixed point equations.

The Fixed Point Characterization

Using the various flows we have defined, we can represent our PDEs as fixed point equations.

• For the finite N dynamics, we have that

$${}^{N}\!\Delta_{t}^{\pm}(\boldsymbol{p},q) = {}^{N}\!\Delta_{0}^{\pm} \circ T_{0,t}^{\pm} \left[{}^{N}\!\Delta_{\cdot}^{+}, {}^{N}\!\Delta_{\cdot}^{-} \right] (\boldsymbol{p},q).$$

B. Young (Rutgers) Studies of rVP April 12, 2011 43/53

The Fixed Point Characterization

Using the various flows we have defined, we can represent our PDEs as fixed point equations.

For the finite N dynamics, we have that

$${}^{N}\!\!\Delta_t^\pm(\rho,q) = {}^{N}\!\!\Delta_0^\pm \circ \mathcal{T}_{0,t}^\pm \left[{}^{N}\!\!\Delta_\cdot^+, {}^{N}\!\!\Delta_\cdot^-\right](\rho,q).$$

For the regularized version of rVP-:

$$f_t(p,q) = f_0 \circ T_{0,t}^0[f](p,q).$$

We use the definition of d_{bL^*} and the basic properties of test functions $\varphi \in \mathcal{D}(\mathbb{R}^6)$ to find:

$$\begin{aligned} d_{bL^*}({}^{N}\!\!\Delta_t^+, f_t) + d_{bL^*}({}^{N}\!\!\Delta_t^-, f_t) \\ &\leq e^{L_0 t} \left(d_{bL^*}({}^{N}\!\!\Delta_0^+, f_0) + d_{bL^*}({}^{N}\!\!\Delta_0^-, f_0) \right) + \lambda^+(t) + \lambda^-(t). \end{aligned}$$

where

$$\lambda^{\pm}(t) = \iint \left| \mathcal{T}_{t,0}^{\pm} \left[{}^{N}\!\!\Delta_{\cdot}^{+}, {}^{N}\!\!\Delta_{\cdot}^{-} \right] (p,q) - \mathcal{T}_{t,0}^{0}[f](p,q) \right| {}^{N}\!\!\Delta_{0}^{\pm}(p,q) d^{3}pd^{3}q.$$

Iterating the flow and using Gronwall's Inequality gives

$$\lambda^{\pm}(t) \leq e^{L_0 t} \int_0^t \gamma^{\pm}(au) e^{-L_0 au} d au$$

where

$$\gamma^{\pm}(t) = \iint \left| V^{\pm} \left[{}^{N}\!\!\Delta_{\cdot}^{+}, {}^{N}\!\!\Delta_{\cdot}^{-} \right] (t, p, q) - V^{0}[f](t, p, q) \right| {}^{N}\!\!\Delta_{t}^{\pm}(p, q) d^{3}p d^{3}q
= \iint \left| G_{\epsilon} * \left[\pm N^{N}\!\!\rho_{t}^{+} \mp N^{N}\!\!\rho_{t}^{-} + \rho_{f_{t}} \right] (q) \right| {}^{N}\!\!\Delta_{t}^{\pm}(p, q) d^{3}p d^{3}q.$$

April 12, 2011

45 / 53

Iterating the flow and using Gronwall's Inequality gives

$$\lambda^{\pm}(t) \leq \mathrm{e}^{L_0 t} \int_0^t \gamma^{\pm}(\tau) \mathrm{e}^{-L_0 \tau} \mathrm{d}\tau$$

where

$$\gamma^{\pm}(t) = \iint \left| V^{\pm} \left[{}^{N}\!\!\Delta_{\cdot}^{+}, {}^{N}\!\!\Delta_{\cdot}^{-} \right] (t, p, q) - V^{0}[f](t, p, q) \right| {}^{N}\!\!\Delta_{t}^{\pm}(p, q) d^{3}p d^{3}q
= \iint \left| G_{\epsilon} * \left[\pm N^{N}\!\!\rho_{t}^{+} \mp N^{N}\!\!\rho_{t}^{-} + \rho_{f_{t}} \right] (q) \right| {}^{N}\!\!\Delta_{t}^{\pm}(p, q) d^{3}p d^{3}q.$$

If we focus on $\gamma^+(t)$, we see

$$\gamma^{+}(t) = \sum_{i=1}^{N} \left| G_{\epsilon} * \left[{}^{N} \rho_{t}^{+} - {}^{N} \rho_{t}^{-} + \frac{1}{N} \rho_{f_{t}} \right] (q_{2i}(t)) \right|.$$

B. Young (Rutgers)

We average over removing the *j*-th negative particle:

$$\gamma^{+}(t) = \sum_{i=1}^{N} \left| G_{\epsilon} * \left[\frac{N-1}{N} {}^{N \setminus i} \rho_{t}^{+} - {}^{N} \rho_{t}^{-} + \frac{1}{N} \rho_{f_{t}} \right] (q_{2i}(t)) \right| \\
\leq \frac{N-1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \left| G_{\epsilon} * \left[{}^{N \setminus i} \rho_{t}^{+} - {}^{N \setminus j} \rho_{t}^{-} \right] (q_{2i}(t)) \right| \\
+ \frac{1}{N} \sum_{i=1}^{N} \left| G_{\epsilon} * \left[\rho_{f_{t}} - {}^{N} \rho_{t}^{-} \right] (q_{2i}(t)) \right|$$

where

$$\begin{array}{rcl}
^{N \setminus j} \Delta_t^+(\rho, q) & = & \frac{1}{N-1} \sum_{k \neq j} \delta(\rho - \rho_{2k}(t)) \delta(q - q_{2k}(t)), \\
^{N \setminus j} \Delta_t^-(\rho, q) & = & \frac{1}{N-1} \sum_{k \neq j} \delta(\rho - \rho_{2k-1}(t)) \delta(q - q_{2k-1}(t)).
\end{array}$$

B. Young (Rutgers)

Using the fact that G_{ϵ} is a vector-valued function with components that are bounded and Lipschitz continuous (by L_G) gives:

$$\gamma^{+}(t) \leq \sqrt{3}L_{G}\frac{N-1}{N}\sum_{i=1}^{N}\left[d_{bL^{*}}\binom{N\backslash i}{\Delta_{t}^{+}}, f_{t}\right) + d_{bL^{*}}\binom{N\backslash i}{\Delta_{t}^{-}}, f_{t}\right]$$
$$+\sqrt{3}L_{G}d_{bL^{*}}\binom{N\Delta_{t}^{-}}{t}, f_{t}.$$

Using the fact that G_{ϵ} is a vector-valued function with components that are bounded and Lipschitz continuous (by L_G) gives:

$$\gamma^{+}(t) \leq \sqrt{3}L_{G}\frac{N-1}{N} \sum_{i=1}^{N} \left[d_{bL^{*}} \binom{N \setminus i}{\Delta_{t}^{+}}, f_{t} + d_{bL^{*}} \binom{N \setminus i}{\Delta_{t}^{-}}, f_{t} \right] + \sqrt{3}L_{G}d_{bL^{*}} \binom{N}{\Delta_{t}^{-}}, f_{t} .$$

Ultimately, we will only look at *expectation values* over our ensemble. Since all particle labels are arbitrary in the ensemble, we have

$$\begin{split} \mathbb{E}_{\mathbb{P}_{0}}\left[\gamma^{+}(t)\right] \leq & \sqrt{3}L_{G}(N-1)\mathbb{E}_{\mathbb{P}_{0}}\left[d_{bL^{*}}\binom{N-1}{\Delta_{t}^{+}},f_{t}\right) + d_{bL^{*}}\binom{N-1}{\Delta_{t}^{-}},f_{t}\right)\right] \\ & + \sqrt{3}L_{G}\mathbb{E}_{\mathbb{P}_{0}}\left[d_{bL^{*}}\binom{N}{\Delta_{t}^{-}},f_{t}\right)\right]. \end{split}$$

Putting this all together with previous estimates (and realizing that in the limit N-1 particles at time t is not essentially different than having N particles) gives:

$$\begin{split} e^{-(\sqrt{3}L_G + L_0)t} \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*}({}^{N}\!\!\Delta_t^+, f_t) + d_{bL^*}({}^{N}\!\!\Delta_\tau^-, f_t) \right] \\ \lesssim & \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*}({}^{N}\!\!\Delta_0^+, f_0) + d_{bL^*}({}^{N}\!\!\Delta_0^-, f_0) \right] \\ & + 2\sqrt{3}L_G N \! \int_0^t \!\! \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*} \left({}^{N}\!\!\Delta_\tau^+, f_\tau \right) + d_{bL^*} \left({}^{N}\!\!\Delta_\tau^-, f_\tau \right) \right] \\ & \cdot e^{-\left(\sqrt{3}L_G + L_0\right)\tau} d\tau. \end{split}$$

B. Young (Rutgers) Studies of rVP April 12, 2011 48 / 53

Putting this all together with previous estimates (and realizing that in the limit N-1 particles at time t is not essentially different than having N particles) gives:

$$\begin{split} \mathbf{e}^{-(\sqrt{3}L_G + L_0)t} \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*}({}^{N}\!\!\Delta_t^+, f_t) + d_{bL^*}({}^{N}\!\!\Delta_\tau^-, f_t) \right] \\ \lesssim & \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*}({}^{N}\!\!\Delta_0^+, f_0) + d_{bL^*}({}^{N}\!\!\Delta_0^-, f_0) \right] \\ & + 2\sqrt{3}L_G N \! \int_0^t \! \mathbb{E}_{\mathbb{P}_0} \left[d_{bL^*} \! \left({}^{N}\!\!\Delta_\tau^+, f_\tau \right) + d_{bL^*} \! \left({}^{N}\!\!\Delta_\tau^-, f_\tau \right) \right] \\ & \cdot \mathbf{e}^{-\left(\sqrt{3}L_G + L_0\right)\tau} d\tau. \end{split}$$

A final application of Gronwall's Inequality gives:

$$\begin{split} \mathbb{E}_{\mathbb{P}_0} \left[\textit{d}_{\textit{bL*}}(\textit{^{N}\!\!\Delta}_t^+, \textit{f}_t) \right. + & \textit{d}_{\textit{bL*}}(\textit{^{N}\!\!\Delta}_t^-, \textit{f}_t) \right] \\ & \lesssim e^{2\sqrt{3}L_0 N t} \mathbb{E}_{\mathbb{P}_0} \left[\textit{d}_{\textit{bL*}}(\textit{^{N}\!\!\Delta}_0^+, \textit{f}_0) + \textit{d}_{\textit{bL*}}(\textit{^{N}\!\!\Delta}_0^-, \textit{f}_0) \right] \end{split}$$

Final Large Deviation Results

Combining the previous inequality with our expected rates of convergence from Sanov's Theorem gives:

$$\mathbb{E}_{\mathbb{P}_0}\left[d_{bL^*}({}^{N}\!\!\Delta_t^+,f_t)+d_{bL^*}({}^{N}\!\!\Delta_t^-,f_t)\right] \hspace{2mm} \lesssim \hspace{2mm} \frac{C\mathrm{e}^{2\sqrt{3}L_0Nt}}{N^{\frac{2}{1+\kappa}}}.$$

Final Large Deviation Results

Combining the previous inequality with our expected rates of convergence from Sanov's Theorem gives:

$$\mathbb{E}_{\mathbb{P}_0}\left[\textit{d}_{bL^*}(^{\textit{N}}\!\!\Delta_t^+, f_t) + \textit{d}_{bL^*}(^{\textit{N}}\!\!\Delta_t^-, f_t)\right] \hspace{2mm} \lesssim \hspace{2mm} \frac{C\mathrm{e}^{2\sqrt{3}L_0Nt}}{N^{\frac{2}{1+\kappa}}}.$$

 While we can't take the limit N → ∞ for any t > 0, we can conclude that for *finite* (but large) N our regularized version of rVP⁻ approximates our dynamics reasonably well for times on the order of 1/N.

B. Young (Rutgers) Studies of rVP April 12, 2011 49 / 53

Final Large Deviation Results

Combining the previous inequality with our expected rates of convergence from Sanov's Theorem gives:

$$\mathbb{E}_{\mathbb{P}_0}\left[d_{bL^*}({}^{N}\!\!\Delta_t^+,\!f_t)+d_{bL^*}({}^{N}\!\!\Delta_t^-,\!f_t)\right]\ \lesssim\ \frac{C\mathrm{e}^{2\sqrt{3}L_0Nt}}{N^{\frac{2}{1+\kappa}}}.$$

- While we can't take the limit N → ∞ for any t > 0, we can conclude that for finite (but large) N our regularized version of rVP⁻ approximates our dynamics reasonably well for times on the order of 1/N.
- We could get convergence at all later times by requiring L_GN to tend to some finite quantity as N tends to infinity. This would force $N\epsilon^{-3}$ to limit to something finite or ϵ to grow on the order of $N^{1/3}$. This is an extremely unphysical state of affairs.

- I. One possibility is that rVP^- is giving the dynamics for f_t , but our estimates are not sharp enough to show it.
- II. We outline what seems to be a more likely possibility. Consider the expected value of the force (as felt by any one of the negative particles, say).

- I. One possibility is that rVP^- is giving the dynamics for f_t , but our estimates are not sharp enough to show it.

 II. We outline what seems to be a more likely possibility. Consider the
- expected value of the force (as felt by any one of the negative particles, say).
 - At the initial time, the expected force term is exactly the force from our regularized version of rVP⁻:

$$\mathbb{E}_{\mathbb{P}_0}\left[-G_{\epsilon}*\left[N^{N}_{\rho_0^+}^+-(N-1)^{N-1}\rho_0^-\right](q)\right] \ = \ -G_{\epsilon}*\rho_{f_0}(q).$$

- I. One possibility is that rVP^- is giving the dynamics for f_t , but our estimates are not sharp enough to show it.
- II. We outline what seems to be a more likely possibility. Consider the expected value of the force (as felt by any one of the negative particles, say).
 - At the initial time, the expected force term is exactly the force from our regularized version of rVP⁻:

$$\mathbb{E}_{\mathbb{P}_0}\left[-G_{\epsilon}*\left[N^{N}\rho_0^{+}-(N-1)^{N-1}\rho_0^{-}\right](q)\right] = -G_{\epsilon}*\rho_{f_0}(q).$$

 Provided that empirical one-point densities at time t converge to a deterministic f_t, then the rVP⁻ force term results again:

$$\mathbb{E}_{\mathbb{P}_t} \left[-G_{\epsilon} * \left[N_{\rho_t}^{N_t^+} - (N-1)^{N-1} \rho_t^- \right] (q) \right] = -G_{\epsilon} * \rho_{f_t}(q).$$

However, this *does not* imply that f_t satisfies rVP^- .

B. Young (Rutgers) Studies of rVP April 12, 2011 50 / 53

To shed more light on the matter, we consider the discrepancy of the force from its expected value:

$$\left|G_{\epsilon}*\left[-\rho_{f_0}+N^{N}\rho_0^{+}-(N-1)^{N-1}\rho_0^{-}\right](q)\right|.$$

For f_0 satisfying LSI(κ , λ), Large Deviation techniques give:

$$\begin{split} \mathbb{E}_{\mathbb{P}_0}\left[\left|G_{\epsilon}*\left[-\rho_{f_0}+N^N\!\rho_0^+-(N-1)^{N-1}\!\rho_0^-\right](q)\right|\right] &\asymp \frac{\mathcal{C}}{N^{\frac{1-\kappa}{1+\kappa}}}\\ \mathrm{Var}_{\mathbb{P}_0}\left(\left|G_{\epsilon}*\left[-\rho_{f_0}+N^N\!\rho_0^+-(N-1)^{N-1}\!\rho_0^-\right](q)\right|\right) &\asymp \frac{\mathcal{C}}{N^{\frac{2-2\kappa}{1+\kappa}}}. \end{split}$$

To shed more light on the matter, we consider the discrepancy of the force from its expected value:

$$\left|G_{\epsilon}*\left[-\rho_{f_0}+N^{N}\rho_0^+-(N-1)^{N-1}\rho_0^-\right](q)\right|.$$

For f_0 satisfying LSI(κ, λ), Large Deviation techniques give:

$$\begin{split} \mathbb{E}_{\mathbb{P}_0}\left[\left|G_{\epsilon}*\left[-\rho_{f_0}+N^N\!\rho_0^+-(N-1)^{N-1}\!\rho_0^-\right](q)\right|\right] &\asymp \frac{\mathcal{C}}{N^{\frac{1-\kappa}{1+\kappa}}} \\ \mathrm{Var}_{\mathbb{P}_0}\left(\left|G_{\epsilon}*\left[-\rho_{f_0}+N^N\!\rho_0^+-(N-1)^{N-1}\!\rho_0^-\right](q)\right|\right) &\asymp \frac{\mathcal{C}}{N^{\frac{2-2\kappa}{1+\kappa}}}. \end{split}$$

Since for $\kappa=1$ these quantities are bounded as $N\to\infty$, the force discrepancy term may actually converge in distribution in this case.

To reemphasize, the possibilities we see for our model are:

1. Our estimates are not sophisticated enough to show convergence to rVP⁻.

To reemphasize, the possibilities we see for our model are:

- Our estimates are not sophisticated enough to show convergence to rVP⁻.
- 2. Based on our calculations with the discrepancy of the force above, we find it more likely that there is some "collision" force term acting in conjunction with the regularized rVP⁻ force term. This possibility is strengthened by recent work of Lancellotti on the Lenard-Balescu collision operator.

To reemphasize, the possibilities we see for our model are:

- Our estimates are not sophisticated enough to show convergence to rVP⁻.
- 2. Based on our calculations with the discrepancy of the force above, we find it more likely that there is some "collision" force term acting in conjunction with the regularized rVP⁻ force term. This possibility is strengthened by recent work of Lancellotti on the Lenard-Balescu collision operator.
- 3. Another possibility based on the analysis of the discrepancy is that there is some stochastic PDE, containing the rVP $^-$ force term, that controls the dynamics of f_t .

To reemphasize, the possibilities we see for our model are:

- Our estimates are not sophisticated enough to show convergence to rVP⁻.
- 2. Based on our calculations with the discrepancy of the force above, we find it more likely that there is some "collision" force term acting in conjunction with the regularized rVP⁻ force term. This possibility is strengthened by recent work of Lancellotti on the Lenard-Balescu collision operator.
- 3. Another possibility based on the analysis of the discrepancy is that there is some stochastic PDE, containing the rVP⁻ force term, that controls the dynamics of f_t .
- NB: In the case of a 2. or 3., time averages over some window of size T for the spatial densities may well be approximated by those from rVP $^-$.

Conjecture

We conjecture that the dynamics for f_t is given by

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = \mathfrak{C}(f_t),$$

where ${\mathfrak C}$ represents whatever "collision" operator is influencing the dynamics.

Conjecture

We conjecture that the dynamics for f_t is given by

$$\partial_t f_t + v(p) \cdot \nabla_q f_t - G_\epsilon * \rho_{f_t}(q) \cdot \nabla_p f_t = \mathfrak{C}(f_t),$$

where $\mathfrak C$ represents whatever "collision" operator is influencing the dynamics.

Assuming that $\mathfrak{C}(f) = 0$ if and only if f is the Boltzmann-Jüttner distribution

$$f_J(p,q) = Ce^{-\beta\left(\sqrt{1+|p|^2}+\psi(q)\right)},$$

(which is the case for all the known operators we have in mind), then any stationary state of our PDE is given by f_J and will satisfy the *stationary* relativistic Vlasov-Poisson system:

$$v(p) \cdot \nabla_q f_J - G_\epsilon * \rho_{f_J}(q) \cdot \nabla_p f_J = 0.$$

We plan to explore this conjecture in future work.