Computer Project 9

The Lorenz Attractor and Chaotic Dynamics

DUE: April 06, 2023

Introduction: In 1961, mathematician/meteorologist Edward Lorenz came up with a
simplified model for making certain weather predictions. The equations he considered
have come to be known as The Lorenz Equations and have the form

d
di;=0(y—3«“)
& _ T — Y — T2
o =P

d

L b,

where the parameters o, p, and § are positive real numbers. In studying the numerical
solutions to these equations, Lorenz made a remarkable discovery. If we pick two sets
of initial data that are relatively close together, the solutions launched by these two
different initial data will quickly look very different. This phenomenon is known as
“sensitive dependence on initial conditions” and is a hallmark of chaotic dynamical
systems. In essence, sensitive dependence on initial conditions means that long term
prediction of the behavior of a complex system is extremely difficult (since we only
know the initial conditions to some finite degree of accuracy).
For this assignment take o = 10, § = %, and p = 45.

1) Find all equilibria for the system with the given values of o, 8, and p.

2) For each equilibrium, find the linearization of the system. What are the eigen-
values for each matrix?

3) Use your implementation of vecRK4 from Project 7 to find a numerical solution to
the Lorenz Equations with initial conditions x(0) = 0,y(0) = 1.85, and 2(0) =0
on the interval 0 < ¢ < 50. Give a plot of all three functions z(¢),y(¢t), and z(t)
(on separate plots). I used 100000 steps for each run.

4) Repeat 3), but with the initial conditions z(0) = 0.01,y(0) = 1.86, and
z(0) = —0.01.

5) Produce a plot where you compare the function z(t) from 3) to z(t) from 4).
Does knowledge of x(t) from 3) help to make long-term predictions about the
x(t) from 4)? Do the same for y(t) and z(t).

6) Produce a three—dimensional parametric plot of the solution from 3). Your
trajectory should produce a tracing of the famous Lorenz Attractor. Sample
code for a different chaotic system appears below.

#define parameters

a = 0.35
b=20.1
c =5.7

#define system for Rossler Attractor
def Rossler(t, vec):
ret = np.zeros_like(vec)
ret[0] = -vec[1] - vec[2]
ret[1] = vec[0] + axvec[1]
ret[2] = b + vec[0]l*vec[2] - c*vec[2]
return ret

Run RK-4 for the Rossler Attractor
T, Ret = vecRK4(Rossler, [1,1,1], 0, 100, 100000)

Run RK-4 for the Rossler Attractor (slightly different Init Data)
T, Retb = vecRK4(Rossler, [1.1,0.8,0.9], 0, 100, 100000)

Plot x, y, z for both solutions
axl = plt.subplot(311)
plt.plot(T,Ret[0], color=’blue’)
plt.plot(T,Retb[0], color=’red’)
plt.xlabel(’t’)

plt.ylabel(’x’)

ax2 = plt.subplot(312)
plt.plot(T,Ret[1], color=’blue’)
plt.plot(T,Retb[1], color=’red’)
plt.xlabel(’t’)

plt.ylabel(’y’)

ax3 = plt.subplot(313)
plt.plot(T,Ret[2], color=’blue’)
plt.plot(T,Retb[2], color=’red’)
plt.xlabel(’t’)

plt.ylabel(’z’)

plt.show()

#Plot 3D parametric plot for the Rossler Attractor

ax = plt.figure().add_subplot(projection=’3d’)

ax.plot(Ret[0], Ret[1], Ret[2], label=’Rossler Attractor’,color=’red’)
ax.set_xlabel(’x’)

ax.set_ylabel(’y’)

ax.set_zlabel(’z’)

plt.show()

>
~10
T T T T T T
0 20 40 60 80 100
100
~ 50 A
0 _ T T T T T T
0 20 40 60 80 100

Figure 1: Plots of x,y, and z vs. ¢ for Similar Initial Data

Figure 2: Plot of the Rossler Attractor

