
Computer Project 7

Fourth Order Runge–Kutta for First–Order

Systems

DUE: February 24, 2023

Introduction: We can easily extend the fourth order Runge–Kutta numerical
method to systems of first–order differential equation of the form

x′
1 = f1(t, x1, x2, · · · , xn), x1(0) = x0

1

x′
2 = f2(t, x1, x2, · · · , xn), x2(0) = x0

2

...

x′
n = fn(t, x1, x2, · · · , xn), xn(0) = x0

n

with minimal changes to the scheme. The similarity to the original method
becomes clear if we rewrite the system in vector form.

x⃗(t) =


x1(t)
x2(t)
...

xn(t)

 , F⃗ (t, x⃗) =


f1(t, x1, x2, · · · , xn)
f2(t, x1, x2, · · · , xn)

...
fn(t, x1, x2, · · · , xn)

 , x⃗0 =


x0
1

x0
2
...
x0
n


dx⃗

dt
= F⃗ (t, x⃗)

x⃗(0) = x⃗0

For a given final time, tf , and number of steps, N , we run through the
method exactly as before (with ∆t = tf/N). The only difference is that the

1

operations become vector operations!

a⃗i = F⃗ (ti, x⃗i)

b⃗i = F⃗

(
ti +

∆t

2
, x⃗i +

∆t

2
· a⃗i

)
c⃗i = F⃗

(
ti +

∆t

2
, x⃗i +

∆t

2
· b⃗i

)
d⃗i = F⃗ (ti +∆t, x⃗i +∆t · c⃗i)

ti+t = ti +∆t

x⃗i+1 = x⃗i +
∆t

6

(
a⃗i + 2⃗bi + 2c⃗i + d⃗i

)
For this project, your goal is to define a Python function

vecRK4(vecFunc, init, startT, finalT, steps)

which is the vector implementation of Fourth Order Runge–Kutta. The various
function arguments are as follows.

� vecFunc: a function that represents the right–hand side of the system of
differential equations

� init: the vector of initial data

� startT: the starting time of the numerical simulation (typically 0)

� finalT: the ending time of the numerical simulation

� steps: an integer specifying the total number of steps in going from
startT to finalT

vecRK4 should return two arrays, T and Ret. T should be a one-dimensional array
of the times (starting from startT, ending on finalT, and containing steps+1
total elements). Ret should be a two-dimensional numpy array containing the
simulation data. Each column of Ret should contain the vector data associated
to the corresponding time in T.1

As for the argument vecFunc, it should be a function of the form

vecFunc(t, vec)

which accepts a time, t, and a vector, vec = [vec[0], vec[1], · · · vec[n-1]].
It should return a numpy array of the same shape as the input vec but with
entries updated by whatever is required by the right–hand side of the system of
differential equations.

1The reason to arrange the data this way is to make it easier to plot. You may want to
begin by storing each individual time increment as a row in the data structure. Then use
Ret = np.transpose(Ret) to transpose the data into the required shape.

2

As an example, consider the system of first–order differential equations given
below (which describes a pair of coupled spring–mass systems with damping).

x′
1 = x3, x1(0) = 1

x′
2 = x4, x2(0) = 0

x′
3 = −3x1 + 2x2 − x3, x3(0) = 0

x′
4 = 2x1 − 2x2 − x4, x4(0) = 0

To code this system in Python, we can do something like the following.

import math

import numpy as np

import matplotlib.pyplot as plt

def vecRK4(vecFunc, init, startT, finalT, stps):

FILL IN YOUR CODE HERE

return T, Ret

def F(t, vec):

ret = np.zeros_like(vec)

ret[0] = vec[2]

ret[1] = vec[3]

ret[2] = -3*vec[0] + 2*vec[1] - vec[2]

ret[3] = 2*vec[0] - 2*vec[1] - vec[3]

return ret

Run RK-4 for the system

T, Ret = vecRK4(F, [1,0,0,0], 0, 10, 1000)

Plot x_1 and x_2

plt.plot(T,Ret[0], color=’blue’, label = "Plot of x1(t)")

plt.plot(T,Ret[1], color=’red’, label = "Plot of x2(t)")

plt.xlabel(’t’)

plt.ylabel(’x’)

plt.title(’Graphs of x1 and x2 vs. t’)

plt.legend()

plt.show()

3

If your code is correct, you should see an image like the following.

Instructions: Submit a file with the sample code above but with your imple-
mentation of vecRK4 filled in where prompted.

4

