Computer Project 7
 Fourth Order Runge-Kutta for First-Order Systems

DUE: February 24, 2023

Introduction: We can easily extend the fourth order Runge-Kutta numerical method to systems of first-order differential equation of the form

$$
\begin{array}{ll}
x_{1}^{\prime}=f_{1}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right), & x_{1}(0)=x_{1}^{0} \\
x_{2}^{\prime}=f_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right), & x_{2}(0)=x_{2}^{0} \\
\quad \vdots & \\
x_{n}^{\prime}=f_{n}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right), & x_{n}(0)=x_{n}^{0}
\end{array}
$$

with minimal changes to the scheme. The similarity to the original method becomes clear if we rewrite the system in vector form.

$$
\begin{aligned}
\vec{x}(t)=\left[\begin{array}{c}
x_{1}(t) \\
x_{2}(t) \\
\vdots \\
x_{n}(t)
\end{array}\right], \vec{F}(t, \vec{x}) & =\left[\begin{array}{c}
f_{1}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right) \\
f_{2}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right) \\
\vdots \\
f_{n}\left(t, x_{1}, x_{2}, \cdots, x_{n}\right)
\end{array}\right], \vec{x}_{0}=\left[\begin{array}{c}
x_{1}^{0} \\
x_{2}^{0} \\
\vdots \\
x_{n}^{0}
\end{array}\right] \\
\frac{d \vec{x}}{d t} & =\vec{F}(t, \vec{x}) \\
\vec{x}(0) & =\vec{x}_{0}
\end{aligned}
$$

For a given final time, t_{f}, and number of steps, N, we run through the method exactly as before (with $\Delta t=t_{f} / N$). The only difference is that the
operations become vector operations!

$$
\begin{aligned}
\vec{a}_{i} & =\vec{F}\left(t_{i}, \vec{x}_{i}\right) \\
\vec{b}_{i} & =\vec{F}\left(t_{i}+\frac{\Delta t}{2}, \vec{x}_{i}+\frac{\Delta t}{2} \cdot \vec{a}_{i}\right) \\
\vec{c}_{i} & =\vec{F}\left(t_{i}+\frac{\Delta t}{2}, \vec{x}_{i}+\frac{\Delta t}{2} \cdot \vec{b}_{i}\right) \\
\vec{d}_{i} & =\vec{F}\left(t_{i}+\Delta t, \vec{x}_{i}+\Delta t \cdot \vec{c}_{i}\right) \\
t_{i+t} & =t_{i}+\Delta t \\
\vec{x}_{i+1} & =\vec{x}_{i}+\frac{\Delta t}{6}\left(\vec{a}_{i}+2 \vec{b}_{i}+2 \vec{c}_{i}+\vec{d}_{i}\right)
\end{aligned}
$$

For this project, your goal is to define a Python function

```
vecRK4(vecFunc, init, startT, finalT, steps)
```

which is the vector implementation of Fourth Order Runge-Kutta. The various function arguments are as follows.

- vecFunc: a function that represents the right-hand side of the system of differential equations
- init: the vector of initial data
- startT: the starting time of the numerical simulation (typically 0)
- finalT: the ending time of the numerical simulation
- steps: an integer specifying the total number of steps in going from startT to finalT
vecRK4 should return two arrays, T and Ret. T should be a one-dimensional array of the times (starting from startT, ending on finalT, and containing steps +1 total elements). Ret should be a two-dimensional numpy array containing the simulation data. Each column of Ret should contain the vector data associated to the corresponding time in $\mathrm{T} .{ }^{1}$

As for the argument vecFunc, it should be a function of the form
vecFunc(t, vec)
which accepts a time, t, and a vector, vec $=[\operatorname{vec}[0]$, $\operatorname{vec}[1], \cdots \operatorname{vec}[\mathrm{n}-1]]$. It should return a numpy array of the same shape as the input vec but with entries updated by whatever is required by the right-hand side of the system of differential equations.

[^0]As an example, consider the system of first-order differential equations given below (which describes a pair of coupled spring-mass systems with damping).

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{3}, & x_{1}(0)=1 \\
x_{2}^{\prime}=x_{4}, & x_{2}(0)=0 \\
x_{3}^{\prime}=-3 x_{1}+2 x_{2}-x_{3}, & x_{3}(0)=0 \\
x_{4}^{\prime}=2 x_{1}-2 x_{2}-x_{4}, & x_{4}(0)=0
\end{array}
$$

To code this system in Python, we can do something like the following.

```
import math
import numpy as np
import matplotlib.pyplot as plt
def vecRK4(vecFunc, init, startT, finalT, stps):
    # FILL IN YOUR CODE HERE
    return T, Ret
def F(t, vec):
    ret = np.zeros_like(vec)
    ret[0] = vec[2]
    ret[1] = vec[3]
    ret[2] = -3*vec[0] + 2*vec[1] - vec[2]
    ret[3] = 2*vec[0] - 2*vec[1] - vec[3]
    return ret
# Run RK-4 for the system
T, Ret = vecRK4(F, [1,0,0,0], 0, 10, 1000)
# Plot x_1 and x_2
plt.plot(T,Ret[0], color='blue', label = "Plot of x1(t)")
plt.plot(T,Ret[1], color='red', label = "Plot of x2(t)")
plt.xlabel('t')
plt.ylabel('x')
plt.title('Graphs of x1 and x2 vs. t')
plt.legend()
plt.show()
```

If your code is correct, you should see an image like the following.

Instructions: Submit a file with the sample code above but with your implementation of vecRK4 filled in where prompted.

[^0]: ${ }^{1}$ The reason to arrange the data this way is to make it easier to plot. You may want to begin by storing each individual time increment as a row in the data structure. Then use Ret $=$ np.transpose (Ret) to transpose the data into the required shape.

