# Computer Project 3 <br> Python Implementation of Numeric ODE Solvers 

DUE: Wednesday, November 9, 2022

1) Implement Euler's Method in Python. You should create a function called Eulers_Method declared as follows.
def Eulers Method(func, $x 0, y 0, x f, N):$
The function arguments are:

- func: a function of the form func ( $x, y$ ) which is the right-hand side of the standard first-order ODE

$$
\frac{d y}{d x}=f(x, y)
$$

$-\mathrm{x} 0, \mathrm{y} 0$ : the initial condition for the $\operatorname{ODE} y\left(x_{0}\right)=y_{0}$,

- xf: the final $x$-value that the method should predict a value for,
-N : the total number of steps used to get from x 0 to xf .
Your function should return two lists, X and Y . X is the list of $\mathrm{N}+1$ evenly spaced $x$-values starting from x 0 and ending at xf . Y should be the corresponding list of predicted $y$-values from Euler's Method.

2) Implement the Fourth Order Runge-Kutta Method in Python. You should create a function called RK4 declared as follows.
```
def RK4(func, x0, y0, xf, N):
```

The function arguments and return types are exactly the same as for Euler's Method.
3) Find the exact solution to the following initial value problem by hand.

$$
\begin{aligned}
\frac{d y}{d x}+\frac{1}{x} y & =\sqrt{y} \\
y(1) & =1
\end{aligned}
$$

Use this to determine the value of $y(16)$.
4) Use your implementation of Eulers_Method from 1) to approximate the solution to the ODE from 3) on the interval $[1,16]$ in 100 steps. Compute the absolute error between the exact value $y(16)$ and the final value reported from your method (which should be Y[100]).
5) Use your implementation of Eulers_Method from 1) to approximate the solution to the ODE from 3) on the interval $[1,16]$ in 1000 steps. Compute the absolute error between the exact value $y(16)$ and the final value reported from your method (which should be Y[1000]). By what factor did the error improve from the run with 100 steps?
6) Use your implementation of RK4 from 2) to approximate the solution to the ODE from 3) on the interval $[1,16]$ in 100 steps. Compute the absolute error between the exact value $y(16)$ and the final value reported from your method (which should be Y[100]).
7) Use your implementation of RK4 from 2) to approximate the solution to the ODE from 3) on the interval $[1,16]$ in 1000 steps. Compute the absolute error between the exact value $y(16)$ and the final value reported from your method (which should be Y[1000]). By what factor did the error improve from the run with 100 steps?

