
Computer Project 2

Get To Know Python!

DUE: 10/26/22

Instructions: Create a Python file that solves the problems given below. For a
nice overview of the language, take a look at the free A Byte of Python tutorial
which can be found at the link below.

https://python.swaroopch.com/

You don’t need to look through all of the topics covered in the tutorial. Going
through the section on Data Structures is probably enough for our purposes.

1) Variables and Lists

a) Create a list which consists of the numbers from 0 to 100 (including
100). Assign this list to a variable.

b) Print out the last 20 elements of the list. You may need to use the
syntax print(*list name) depending on how you defined your list!

c) Print out the even elements of the list.

d) Print out the elements of the list that are divisible by 3.

e) Create a list of the first 100 perfect squares (starting with 0) using
list comprehension.

2) Create a Function

a) Create a function in Python called C2F which converts degrees Celsius
to degrees Fahrenheit. The output should be a real number.

b) Create a function in Python called F2C which converts degrees Fahren-
heit to degrees Celsius. The output should be a real number.

c) Create a function in Python called degreeConvert which takes two
arguments: a real number and either the letter 'C' or the letter
'F'. If the letter is 'C', you should convert the given real number to
degrees Fahrenheit; if the letter is 'F', you should convert the given
real number to degrees Celsius. If any other letter is supplied, you

1

should print a message reporting that fact. The output should look
like the following.

>>> degreeConvert(45, 'C')

45 degrees C = 113 degrees F

>>> degreeConvert(59, 'F')

59 degrees F = 15 degrees F

>>> degreeConvert(30, 'G')

Usage Error: Expected either F or C for temperature scale!

Notice that your function only has to print messages! You do not
have to specify a return value.

3) Recursively Defined Functions

Like most modern computer languages, Python allows you to define func-
tions recursively. That is, you are allowed to call the function you are
defining in the body of the definition! Care must be taken to avoid get-
ting into an infinite recursion, however.

A classic example is the factorial function. We know that n! = n · (n− 1)!
which allows us to reduce computing factorials to an easier case. In order
to stop the process, we need a base case. For factorials, we can use 0! =.
The following code is a recursive implementation of factorial.

def factorial(n):

if n == 0:

return 1

else:

return n * factorial(n-1)

a) Write a recursive implementation of the function new pow(x,n) which
returns xn where n is a non-negative integer. For the base case, use
new pow(x,0) = 1.

b) Write a recursive implementation of the function Fibonacci(n) which
returns the n-th Fibonacci number. This function requires two base
cases.

Fibonacci(0) = 0

Fibonacci(1) = 1

4) For Loops in Python

a) Rewrite the factorial function above iteratively. That is, compute
factorial(n) by using a for loop to accumulate the final answer.

2

b) You can directly iterate over any list in Python as follows.

myList = ['Robert', 'Thomas', 'Kathy', 'Brent']

for name in myList:

print(f"{name} is in the Differential Equations course.")

Create a list of the first 100 perfect squares as in problem 1e). Iterate
over this list printing out only the perfect squares that are divisible
by both 3 and 5.

5) Importing Modules in Python

There are a huge number of modules developed for Python that add new
functions and tools once they are imported. An extremely important one
is the Random Module which can be imported with the following code.

import random

This module defines a number of functions that generate (pseudo)-random
numbers.

a) The function random.randint(a,b) selects a random integer N in
the range a ≤ N ≤ b (note that b is included here). Use this function
to create a list of 100 random integers between 1 and 100 (including
100 as a possibility). Iterate through this list counting how many
are in the ranges 1 ≤ N < 25, 25 ≤ N < 50, 50 ≤ N < 75, and
75 ≤ N ≤ 100.

b) The function random.uniform(a,b) selects a random floating point
number r in the range a ≤ r ≤ b (note that b is also included here).
The special case random.uniform(0,1) is equivalent to the function
random.random(). Use this function to create a list of 100 random
floating point numbers between 0 and 10 (including 10 as a possibil-
ity). Iterate through this list counting how many are in the ranges
0 ≤ r < 2, 2 ≤ r < 4, 4 ≤ r < 6, 6 ≤ r < 8, and 8 ≤ r ≤ 10.

c) The function random.choice(lst) selects a single random element
from the list lst. Create a function chooseLetters(n) that returns
a list of length n containing randomly selected letters from the list

letters = ['A','B','C','D','E','F','G','H','I','J'].

Repeats are allowed (and necessary if n > 10)!

6) The Pyplot Module and Graphing in Python

The Pyplot module is a submodule of Matplotlib which will allow us to
make decent plots in Python. We can import this submodule using the
following command.

import matplotlib.pyplot as plt

3

Notice that the as keyword allows us to alias the longer name of the
submodule as the more manageable plt. If you leave off that portion of the
import statement, you would need to type matplotlib.pyplot.command
instead of plt.command for any commands you want to enter from the
module. A nice overview of the Pyplot module can be found at the site
below.

https://matplotlib.org/stable/tutorials/introductory/pyplot.html

a) Plot a graph of y = x2 on the interval −5 ≤ x ≤ 5. In order to do
this in Python, you need to create a list X which consists of a number
of points uniformly chosen over the interval [−5, 5]. For this problem,
use at least 1000 points (and make sure the last point is 5). You then
create a list Y which consists of x**2 for each x in the list X. You can
then plot the graph with the following code.

plt.plot(X,Y)

plt.xlabel('x')

plt.ylabel('y')

plt.title('Graph of y = x^2')

plt.show()

There are many other options you can include before displaying the
graph with the command plt.show(). Notice that once you close the
pop–up window with the graph, the entire plot is gone from memory!

b) Repeat part a), but display the graphs of y = sin(x) and y = cos(x)
on the same axes in two different colors. Reuse your list of x-values,
X, from part a), but you will need two lists for the y-values (say Y1

and Y2). Note that you will need to include import math and call
the trig functions by math.sin(x) and math.cos(x). The code is
very similar to the previous example.

plt.plot(X,Y1,color='blue')

plt.plot(X,Y2,color='red')

plt.xlabel('x')

plt.ylabel('y')

plt.title('Graphs of Sine and Cosine')

plt.show()

The total list of named colors can viewed at

https://matplotlib.org/stable/gallery/color/named colors.html.

Also note that common colors like blue, red, black, etc. can be spec-
ified without the color = 'colorname' syntax. The tutorial men-
tioned at the beginning of this section should have the details.

4

