FORMULA SHEET

- For an equation of the form

$$
\frac{d y}{d x}+P(x) y=Q(x)
$$

the general solution is of the form

$$
y(x)=\frac{\int \mu(x) Q(x) d x+C}{\mu(x)},
$$

where

$$
\mu(x)=e^{\int P(x) d x} .
$$

- A first order homogeneous equation can be reduced to a separable differential equation by the substitution

$$
y(x)=x v(x)
$$

- A Bernoulli equation can be reduced to a first order linear differential equation by the substitution

$$
z(x)=[y(x)]^{1-n} .
$$

- A differential equation of the form

$$
M(x, y) d x+N(x, y) d y=0
$$

is an exact equation if and only if

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x} .
$$

For an exact equation, the general solution is of the form $F(x, y)=C$ where

$$
\frac{\partial F}{\partial x}=M \text { and } \frac{\partial F}{\partial y}=N
$$

- Variation of Parameters: Suppose $x_{1}(t)$ and $x_{2}(t)$ form a complete set of solutions to the homogenous equation

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=0 .
$$

That is, the general homogenous solution is of the form

$$
x_{h}(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)
$$

A particular solution to the inhomogeneous equation

$$
x^{\prime \prime}+p(t) x^{\prime}+q(t) x=f(t)
$$

is given by

$$
x_{p}(t)=v_{1}(t) x_{1}(t)+v_{2}(t) x_{2}(t)
$$

where

$$
v_{1}(t)=-\int \frac{x_{2}(t) f(t)}{W\left[x_{1}, x_{2}\right](t)} d t
$$

and

$$
v_{2}(t)=\int \frac{x_{1}(t) f(t)}{W\left[x_{1}, x_{2}\right](t)} d t
$$

where the Wronskian is given by

$$
W\left[x_{1}, x_{2}\right](t)=\left|\begin{array}{cc}
x_{1}(t) & x_{2}(t) \\
x_{1}^{\prime}(t) & x_{2}^{\prime}(t)
\end{array}\right| .
$$

