Introduction to Ordinary Differential Equations Outline for Exam 4

Test Date: 02/22/2023

NO BOOKS OR NOTES WILL BE PERMITTED! NO ELECTRONIC DEVICES ARE PERMITTED!

- I. Linear Systems of Differential Equations
 - A. Basics of First Order Systems
 - 1. Be able to rewrite a linear system in matrix/vector form.
 - 2. Be able to rewrite higher order ODEs as linear systems of first order ODEs.
 - B. Solutions to First Order Systems by Eigenvalues/Eigenvectors
 - Be able to write the general solution to a diagonalizable linear system with constant coefficients by computing eigenvalues and eigenvectors
 - 2. In the case of complex eigenvalues, be able to write the solution in real form.
 - 3. Be able to handle repeated eigenvalues with generalized eigenvectors in simple cases $(2 \times 2 \text{ and } 3 \times 3 \text{ matrices only})$.
 - 4. Be able to find particular solutions for simple inhomogeneous terms using Undetermined Coefficients.
- II. Applications of First Order Systems
 - A. Be able to setup and solve problems involving coupled tanks.
 - B. Be able to setup and solve problems involving coupled masses and springs.
- III. The Matrix Exponential
 - A. Be able to compute a fundamental matrix solution $\Phi(t)$ for a linear system of the form

$$\frac{d\vec{x}}{dt} = M\vec{x}.$$

B. For small matrices (i.e. 2×2), be able to compute e^{tM} using a fundamental matrix.

$$e^{tM} = \Phi(t)\Phi^{-1}(0)$$